簡易檢索 / 詳目顯示

研究生: 劉奇杰
Chi-Chieh Liu
論文名稱: 擬電容氧化錳承載之指叉式碳微管電極的微型化平面超高電容器
Planar miniaturized Ultracapacitor built on pseudocapacitive manganese oxide loaded on the interdigital pattern of carbon nanotubes
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 李奎毅
Kuei-yi LEE
呂宗昕
Chung-Hsin Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 140
中文關鍵詞: 超高電容器指叉式電容器對稱非對稱氧化錳輸出功率奈米碳管
外文關鍵詞: Ultracapacitor, Interdigital Electrode, symmetry, asymmetry, MnO2, Discharge Power, Carbon nanotube
相關次數: 點閱:364下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本研究藉由蝕刻/顯影技術、化學氣相沉積(CVD)及陽極電鍍法製備出圖形化氧化錳/碳微管複合電極,以構成指叉式微型超高電容器來探討指叉式原件之擬電容表現,以及有、無金之疊層對成長碳微管電極結構的影響,並以循環伏安、充放電、交流阻抗電化學實驗分析兩種疊層之對稱與非對稱式指叉超高電容器的電容及放電特性。
    以化學氣相沉積法所成長出之碳微管可在無金疊層之指叉式電極上長出密度較高、比表面積較大之垂直式碳結構,其高度約可到達30 – 50 μm,其氧化錳會隨著垂直的碳微管出現直行的水滴式排列並具有尺寸相當一致的顆粒;而在有金疊層之指叉式電極則會因金的聚集效應導致鐵微粒子無法均勻散佈,成長出形貌較為疏散、不具規則性且高度較矮(1-2μm)之碳微管,使電鍍過程中氧化錳鍍在碳管表層,沒有進入碳管叢林沉積。
    無金疊層之指叉電容器其性能表現受到電極內部阻抗所主宰,在慢的儲能速率下具有較高之電容值148 mF/cm2 (68.4F/g) 及較大的儲存能量628μJ,然而在快的儲能速率下其伏安圖型會傾斜與縮小並具有較大的能量損失,此外放電過程也會有電壓降(IR-drop)的出現;反之,有金疊層之電容器電阻對的影響較小,在快速的儲能過程中仍能呈現出氧化錳伏安掃描圖型特徵,在電容值的衰退上也較小,並可獲得較高輸出功率68μW、較佳的電極使用效率、較大的量測電流範圍且放電過程中不會出現電壓降的行為,但是含金之疊層會影響碳管之形貌及高度,使電容器有較小的電容值51 mF/cm2、儲存能量225μJ。
    由對稱和非對稱式電極之電容特性分析結果顯示,非對稱式電極有較佳之儲電能力,隨著放電電流的增加亦具有較少的電容、極化損失及較大的輸出功率及儲存電能,於無金疊層之氧化錳/碳微管複合電極下其電容值及儲存能量可達到365 mF/cm2 (169F/g)、2200μJ、輸出高率為34μw皆較對稱式來的高出多,這種現象在金疊層之非對稱式電極也可發現,其儲存能量可達2089μJ。
    關鍵詞:超高電容器、指叉式電容器、對稱、非對稱、氧化錳、輸出功率、奈米碳管。


    ABSTRACT

    In this master thesis, we report the preparation and properties of miniaturized ultracapacitors loaded with carbon nanotubes (CNT) and MnO2 in planar configuration. The interdigitated electrodes of these ultracapacitors with an electrode spacing of 20 μm, are fabricated using the standard technologies of photolithography, chemical vapor deposition, and electrodeposition, such that they can be readily integrated into the energy device of portable electronics. The correlation between the structure and energy storage property is studied with the symmetric and asymmetric electrodes, and the stack layer with and without gold. We measure the capacitance of electrodes using cyclic voltammetry (CV), while the energy and power of the cell with the galvanostatic charge-discharge experiment.

    Although the gold addition in the Al-Fe stack layer decreases the resistance of stack layer, the structure of CNT array is severely affected as well. Without the Au incorporation, the CNT array on the Al-Fe stack layer is vertically aligned, densely populated with its number density > 109 cm-2. We may grow the interdigitated CNT bundle of height 30 – 50 μm, hence facilitate the establishment of MnO2-CNT electrodes with vertical side wall. On the other hand, the CNT on the Al-Fe-Au stack layer grows short, 1 – 2 μm, less populated and without vertical alignment. Hence the MnO2-CNT interdigital electrodes are ill defined in its electrode boundary and electrodeposited MnO2 seems to be present outside the entangled CNT forest.

    For the ultracapacitor built on the Al-Fe stack layer, the resistance of stack layer plays an important role in its energy storage performance. The CV measurements indicate that the capacitance of symmetric electrode of CNT+MnO2 is 148 mF cm-2, but the capacitance decreases quickly with increasing sweep rate because of the higher resistance of stack layer. Similarly, the galvanostatic discharge measures the energy storage can be as high as 628 μJ, also decreases rapidly with increasing current. Meanwhile, the cell built on the Al-Fe stack layer also displays a larger IR drop. In contrast, for the ultracapacitor built on the Al-Fe-Au stack layer, the electrode capacitanace measures 51 mF cm-2, but the capacitance decreases at a relatively slow pace. The symmetric cell of CNT+MnO2 demonstrates a smaller energy capacity, 225 μJ, but a higher power output 68 μW, because of a more conductive stack layer.

    Another crucial factor is whether the cell is symmetric with two comb-like electrodes of CNT+MnO2, or asymmetric with one electrode of CNT+MnO2 and another electrode of CNT. The asymmetric cell always exhibits a superior capacitor performance, regardless its stack layer. The maximum energy of the asymmetric cell on Al-Fe stack is measured 2200μJ, and the maximum power 34μW. The maximum energy of the asymmetric cell on Al-Fe-Au stack is similar in magnitude, 2089μJ, and the maximum power is slightly higher, 37μW.
    Keywords: Ultracapacitor; Interdigital Electrode; symmetry; asymmetry; MnO2; Discharge Power; Carbon nanotube

    目錄 中文摘要........................................................................Ⅰ 英文摘要........................................................................Ⅲ 誌謝.................................................................................V目錄................................................................................Ⅵ 圖目錄.............................................................................X 表目錄...........................................................................XVI 第一章 緒論....................................................................... 1 第二章 文獻回顧與理論基礎.................................... 4 2.1 超高電容器(Ultracapacitor) .................................. 4 2.2 電容器的基礎化學理論..................................... 6 2.2.1 電雙層電容............................................................ 8 2.2.2 擬電容.................................................................. 11 2.3 超高電容器的電極材料........................................ 13 2.3.1 碳材電極.............................................................. 13 2.3.2 聚合物電極.......................................................... 16 2.3.3 金屬氧化物電極.................................................. 17 2.3.4 二氧化錳電極的電容特性與製備方法.............. 21 2.3.5 碳微管電極的製備.............................................. 32 2.4 單晶片超高電容器................................................. 33 2.4.1 指叉式超高電容器.............................................. 33 第三章 實驗方法及步驟............................................ 36 3.1 實驗藥品與儀器設備............................................ 36 3.2 實驗流程................................................................... 40 3.3 實驗方法................................................................... 41 3.3.1基材的清洗與準備.................................................. 41 3.3.2 微影/蝕刻製程(Photolithography) ......................... 41 3.3.3濺鍍鈦金屬(Ti)層.................................................... 43 3.3.4濺鍍金(Au)層........................................................... 44 3.3.5沉積鐵/鋁(Fe/Al)碳微管觸媒層......................... 44 3.3.6去除光阻劑............................................................. 44 3.3.7成長碳微管.......................................................... 45 3.3.8試片封裝.................................................................. 45 3.3.9電化學陽極電鍍MnO2............................................ 46 3.4 電極材料鑑定與分析............................................ 46 3.4.1 電化學特性分析................................................... 46 3.4.2 電極表面結構與能量散佈儀(EDX)元素分析.... 49 3.4.3 X光繞射晶相分析............................................... 50 3.4.4 電化學計算分析................................................... 51 第四章 結果與討論......................................................52 4.1 圖形化疊層(patterned stack layer) ..................... 52 4.1.1 CNT/Fe-Al/Au/Ti/SiO2/Si的製備........................ 53 4.1.2 CNT循環伏安特性分析...................................... 54 4.1.3 CNT電化學阻抗分析EIS................................... 57 4.1.4 MnO2-CNT複合電極的循環伏安分析............... 59 4.1.5 MnO2-CNT複合電極阻抗分析EIS.................... 63 4.2 碳微管微觀結構觀察............................................ 65 4.3 氧化錳/碳微管複合式電極之橫截面形貌....... 68 4.4 氧化錳電極之XRD分析..................................... 70 4.5 氧化錳電極之EDS分析.................................. 72 4.6 指叉式電容器之電容特性................................... 73 4.6.1 循環伏安特性分析............................................... 74 4.6.2 恆電流充、放電特性分析................................... 77 4.6.3 電化學阻抗分析EIS............................................ 81 4.6.4 對稱之指叉式電容器放電特性分析................... 84 4.7 對稱與非對稱式指叉式電容器.......................... 89 4.7.1 循環伏安特性分析............................................... 90 4.7.2 恆電流充、放電特性分析................................... 95 4.7.3 電化學阻抗分析EIS.......................................... 100 4.7.4 對稱與非對稱式電極放電特性分析................. 102 第五章 結論.............................................................. 108 參考文獻..................................................................... 112 附錄A.................................................................................. 120 附錄B..........................................................................122 附錄C...................................................................123 圖目錄 圖2- 1 電能量儲存裝置的Ragone Plot,比功率密度對比能量密度作圖...............................................................................................5 圖2- 2 平行板式電容器......................................................................... 7 圖2- 3 電雙層電容器之示意圖............................................................. 9 圖2- 4 GRAHAM所提出之電極式雙層工作原理模型.................... 10 圖2- 5 孔洞直徑、頻率對電容值的關係圖....................................... 15 圖2- 6 二氧化釕電極的循環伏安圖................................................... 18 圖2- 7 釕的不同氧化態其電容、電流隨電壓上升的關係圖........... 19 圖2- 8 不同熱分解溫度的錳氧化物電極於KCl電解液中的循環伏安曲線圖,其中熱分解溫度300 C有最高的電容值.................24 圖2- 9 (a)掃描速率50 mV s-1之循環伏安圖 (b)0.1 mA 定電流放電曲線圖......................................................................................25 圖2- 10 錳氧化物電極於0.1M Na2SO4電解液中的循環伏安曲線圖..............................................................................................27 圖2- 11 錳氧化物膜在(A)定電流(B)定電位(C)動電位陽極電鍍法下的比電容值............................................................................... 28 圖2- 12 (a) MnO2 和(b) MnO2/CNT電極在1.0M KCl中的循環伏安曲線圖......................................................................................29 圖2- 13 不同熱處理溫度下(1-6:air,100,200,300,350,400 oC),a- MnO2•nH2O電極於0.1M Na2SO4電解液中掃瞄速度為 25 mV/s的循環伏安曲線圖.........................................................30 圖2- 14 碳微管的成長機制示意圖....................................................... 33 圖2- 15 容增加頻率與指數量在不同指寬度下的關係圖................... 34 圖2- 16 在電壓範圍0-0.4V,循環時間0.4秒的時間庫倫分析圖.... 35 圖3- 1 實驗流程圖............................................................................... 40 圖3- 2 微影/蝕刻製程流程圖.............................................................. 42 圖3- 3 試片封裝流程圖...................................................................... 45 圖3- 4 指叉式超高電容器光罩圖型................................................... 47 圖3- 5 電化學陽極電鍍裝置示意圖................................................... 48 圖3- 6 電化學量測裝置示意圖........................................................... 48 圖3- 7 XRD 量測樣品示意圖............................................................ 50 圖4- 1 不同電流收集層厚度於50 mV/s掃描速率下之循環伏安圖..............................................................................................55 圖4- 2 不同電流收集層厚度之電化學阻抗分析圖........................... 57 圖4- 3 A.無金疊層、B.有金疊層的氧化錳/碳微管複合電極於10、50、200、500 mV/s掃描速率下的循環伏安圖....................60 圖4- 4 MnO2-CNT複合電極之電化學阻抗分析圖.........................62 圖4- 5 無金疊層所製備出之碳微管指叉式電極圖型的SEM(A)橫截面、(B)高倍率橫截面、(C)高倍率正面、(D)正面、(E)三維式結構圖............................................................................. 64 圖4- 6 有金疊層所製備出之碳微管指叉式電極圖型的SEM(A)橫截面、(B) 高倍率橫截面、(C)高倍率正面、(D)正面圖......... 65 圖 4- 7 氧化錳/碳微管複合式電極之橫截面形貌的SEM照片(A) 無金疊層(B) 有金疊層.............................................................. 67 圖4- 8 脈衝式陽極沉積法之 氧化錳X 光繞射分析圖譜............... 69 圖4- 9 A.無金疊層、B.有金疊層的指叉式氧化錳/碳微管電極超高電容器於0~1V電壓範圍,10、50、200、500 mV/s掃描速率下的循環伏安圖......................................................................73 圖4- 10 有、無金疊層之電極於不同電流的充、放電圖................... 77 圖4- 11 有(B.)、無(A.)金疊層之電化學阻抗分析(EIS) .................... 80 圖4- 12 有、無金疊層之電極於不同放電電流下之輸出功率對放電電流所作的線性模擬圖............................................................... 84 圖4- 13 有、無金疊層之電極以輸出功率對放電電流作圖............... 85 圖4- 14 有、無金疊層之指叉式超高電容器的Ragone圖...................86 圖4- 15 無金疊層之對稱與非對稱的循環伏安電性量測圖A.對稱式CNT電極B.非對稱式電極以CNT作為工作電極,MnO2/CNT作為相對電極C. 非對稱式電極以MnO2/CNT作為工作電極,CNT作為相對電極D.對稱式MnO2/CNT電極............90 圖4- 16 有金疊層之對稱與非對稱的循環伏安電性量測圖A.對稱式CNT電極B.非對稱式電極以CNT作為工作電極,MnO2/CNT作為相對電極C. 非對稱式電極以MnO2/CNT作為工作電極,CNT作為相對電極D.對稱式MnO2/CNT電極............91 圖4- 17 無金疊層之對稱與非對稱的恆電流充、放電曲線圖A.對稱式CNT電極B.非對稱式電極以CNT作為工作電極,MnO2/CNT作為相對電極C. 非對稱式電極以MnO2/CNT作為工作電極,CNT作為相對電極D.對稱式MnO2/CNT電極............94 圖4- 18 有金疊層之對稱與非對稱的恆電流充、放電曲線圖A.對稱式CNT電極B.非對稱式電極以CNT作為工作電極,MnO2/CNT作為相對電極C. 非對稱式電極以MnO2/CNT作為工作電極,CNT作為相對電極D.對稱式MnO2/CNT電極............95 圖4- 19 無金疊層之對稱與非對稱的電化學阻抗分析圖A.對稱式電極CNT-CNT B.非對稱式電極Working on CNT C. 非對稱式電極Working on MnO2 D.對稱式電極MnO2/CNT................99 圖4- 20 有金疊層之對稱與非對稱的電化學阻抗分析圖A.對稱式電極CNT-CNT B.非對稱式電極Working on CNT C. 非對稱式電極Working on MnO2 D.對稱式電極MnO2/CNT................99 圖4- 21 無金疊層之對稱與非對稱式電極功率對放電電流的線性模擬圖A.對稱式CNT電極B.非對稱式電極Working on CNT C. 非對稱式電極Working on MnO2, D.對稱式MnO2/CNT電極............................................................................................101 圖4- 22 無金疊層之對稱與非對稱式電極其輸出功率對放電電流作圖A.對稱式CNT電極B.非對稱式電極Working on CNT C. 非對稱式電極Working on MnO2, D.對稱式MnO2/CNT電極............................................................................................102 圖4- 23 有金疊層之對稱與非對稱式電極其輸出功率對放電電流作圖A.對稱式CNT電極B.非對稱式電極Working on CNT C. 非對稱式電極Working on MnO2, D.對稱式MnO2/CNT電極............................................................................................103 圖4- 24 無金疊層之對稱與非對稱式電極的能量對輸出功率之Ragone圖A.對稱式CNT電極B.非對稱式電極以CNT作為工作電極,MnO2/CNT作為相對電極C. 非對稱式電極以MnO2/CNT作為工作電極,CNT作為相對電極D.對稱式MnO2/CNT電極.....................................................................104 圖4- 25 有金疊層之對稱與非對稱式電極的能量對輸出功率之Ragone圖A.對稱式CNT電極B.非對稱式電極以CNT作為工作電極,MnO2/CNT作為相對電極C. 非對稱式電極以MnO2/CNT作為工作電極,CNT作為相對電極D.對稱式MnO2/CNT電極..................................................................... 105 表目錄 表 3- 2 藥品與消耗性材料規格表......................................................36 表 3- 3 儀器規格及廠牌......................................................................38 表 3- 4 Ti的濺鍍條件.........................................................................43 表 3- 5 Au的濺鍍條件........................................................................43 表 3- 6 CNT的成長條件.....................................................................44 表 4- 1 不同金薄膜厚度於10、50、200、500 mV/s掃描速率下的比電容值................................................................................. 56 表 4- 2 有、無金薄膜層的氧化錳/碳微管複合電極於10、50、200、500 mV/s掃描速率下所計算出之比電容值......................... 62 表 4- 3 錳氧化物元素組成的EDX分析.............................................72 表 4- 4 有、無金之疊層的指叉式氧化錳/碳微管電極超高電容器於 10、50、200、500 mV/s掃描速率下所計算出之比電容值(mF/cm2)、(F/ gMnO2+CNT) ...........................................................76 表4- 5 有、無金薄膜層之電極於不同放電電流的比電容值(mF/cm2)、(F/ gMnO2+CNT) ............................................................80 表4- 6 無金疊層之對稱與非對稱式電極於不同掃描速率下比電容 值比較a.對稱式電極CNT-CNT b.非對稱式電極Working on CNT c. 非對稱式電極Working on MnO2 d.對稱式電極MnO2/CNT............................................................................... 94 表4- 7 有金疊層之對稱與非對稱式電極於不同掃描速率下之比電容值比較a.對稱式電極CNT-CNT b.非對稱式電極Working on CNT c. 非對稱式電極Working on MnO2 d.對稱式電極MnO2/CNT............................................................................... 94 表4- 8 無金疊層之對稱與非對稱式電極於不同放電電流下之比電容值比較a.對稱式CNT電極b.非對稱式電極以CNT作為工作電極,MnO2/CNT作為相對電極c. 非對稱式電極以MnO2/CNT作為工作電極,CNT作為相對電極d.對稱式MnO2/CNT電極.......................................................................98 表4- 9 有金疊層之對稱與非對稱式電極於不同放電電流下之比電容值比較a.對稱式CNT電極b.非對稱式電極以CNT作為工作電極,MnO2/CNT作為相對電極c. 非對稱式電極以MnO2/CNT作為工作電極,CNT作為相對電極d.對稱式MnO2/CNT電極.......................................................................99 表4- 10 無金疊層之對稱與非對稱式電極的最大能量及最大功率值..........................................................................................106 表4- 11 有金疊層之對稱與非對稱式電極的最大能量及最大功率值..........................................................................................107

    1. R. Kotz, M. Carlen, Electrochim. Acta, 45, 2483 (2000).
    2. B. E. Conway, Kluwer-Plenum, New York (1999).
    3. B. E. Conway, J. Electrochem. Soc., 138, 1539 (1991).
    4. J. Sowash, Am. Ceram. Soc. Bull., 88, 19 (2009)
    5. S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Technol. 17, 175–195(2006).
    6. P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proceedings of the IEEE, 96, pp. 1457–1486(2008).
    7. G.A. Ardila Rodríguez, H. Durou, L. Ouarak, D. Colin, C. Rossi, C. Baud, J.Y.Fourniols, Power MEMS, Sendai, Japan, 9–12 November, (2008).
    8. F. Leroux, K. Metenier, S. Gautier, E. Frackowiak, S. Bonnamy, F. Beguin,J. Power Sources, 81 , 317 (1999).
    9. G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, W. Z.Li, J. Electrochem. Soc., 146, 1696(1999).
    10. E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin, Carbon , 37, 61-69 (1999).
    11. C. Nutzenadel, A. Zuttel, D. Chartouni, L. Schlapbach, Electrochem. Solid-State Lett., 2, 30(1999).
    12. C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett.,70, 1480(1997).
    13. L. Diederich, E. Barborini, P. Piseri, A. Podesta, P. Milani, A. Schneuwly,R. Gallay, Appl. Phys. Lett., 75, 2662(1999).
    14. R. Z. Ma, J. Liang, B. Q. Wei, B. Zhang, C. L. Xu, D. H. Wu, J. Power Sources, 84, 126( 1999).
    15. C. C. Hu, W. C. Chen, K. H. Chang, J. Electrochem. Soc., 151, A281 (2004).
    16. C. C. Hu, W. C. Chen, Electrochim. Acta, 49, 3469(2004).
    17. 黃瑞雄,顏溪成, ”漫談電化學”, 科學發展 359 期, 22 (2002)
    18. T.C. Murphy, R.B. Wright, R.A. Sutula, Electrochem. Soc., vols. 96–25, p. 258(1997).
    19. A. Nishino, J. Power Sources, 60, 137-147(1996)
    20. K. B. Oldham and J. C. Myland, Fundamentals of Electrochemical Science, Academic Press, Inc., California, (1994).
    21. V.N. Obreja, Physica E, 40, 2596–2605(2008).
    22. B.E. Conway, Chemistry Department, University of Ottawa, Canada (2003).
    23. A. Burke, J. Power Sources 91, 37(2000).
    24. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque and M. Chesneau, J. Power Sources 101, 109-116(2001).
    25. 胡啟章編著, 電化學原理與方法. 五南, p. 4(2002)
    26. S. Ardizzone, G. Fregonara, S. Trasatti, Electrochem. Acta 35, 263(1990).
    27. H.E. Becker, U.S. Patent 2 800 616 (to general Electric) (1975)
    28. E. Frackowiak and F. Beguin, Carbon 39, 937-950(2001).
    29. X. Ren, S. Gottesfeld, J.P. Ferraris, in: F.M. Delnick, M. Tomkiewicz, Electrochem. Soc., vol 95–29, p. 138(1996).
    30. C. Arbizzani, M. Mastragostino, L. Meneghello, Electrochim. Acta 41 (1996)
    31. K. Naoi, Extended Abstracts, 49th Annual Meeting of the International Society of Electrochemistry, Kitakyushu, Japan, 647(1998).
    32. S. Hadzi-Jordanov, H. Angerstein-Kozlowska, M. Vukovic, B. E. Conway, Reversibility and growth behavior of surface oxide films at ruthenium electrodes, J. Electrochem. Soc., 125, 1471(1978).
    33. T. Liu, W. G. Pell, B. E. Conway, Electrochim. Acta, 42, 3541 (1997).
    34. B. Battaglin, A. Carnera, G. Della Mia, G. Lodi and S.Trasatti, J. Chem. Sot. Furaday Trans. I 81, 2995 (1985).
    35. T. R. Jow, J. P. Zheng, J. Electrochem. Soc., 145 (1998)
    36. D. Michell, D. A. J. Rand, R. Woods, J. Electroanal. Chem., 89 (1978).
    37. L. D. Burk, O. J. Murphy, J. F. O’Neill, S. Venkatesan, J. Chem. Soc., Faraday Trans. I, 23, 1659(1977).
    38. I. D. Raistrick, in The Electrochemistry of Semiconductors and Electronics-Processes and Device, p. 297, J. McHardy, F. Luduig, Editors, Noyes, Park Ridge,NJ (1992).
    39. W. Dmowski, T. Egami, K.E. Swider-Lyons, C.T. Love and D.R. Rolison, J. Phys. Chem. B, 106, 12677(2002).
    40. J. P. Zheng, T. R. Jow, J. Electrochem. Soc., 142, L6 (1995).
    41. J. P. Zheng, P. J. Cygan, T. R. Jow, J. Electrochem. Soc., 142, 2699(1995).
    42. Q. L. Fang, D. A. Evans, S. L. Roberson, J. P. Zheng, J. Electrochem. Soc., 148, A833 (2001).
    43. C. C. Hu, T. W. Tsou, 4, 105 (2002).
    44. R.N. Reddy, R.G. Reddy, J. Power Sources, 124, 330 (2003).
    45. M. Toupin, T. Brousse, D. Belanger, Chem. Mater. 16, 3184 (2004).
    46. S.-C. Pang, M.A. Anderson, T.W. Chapman, J. Electro. Soc., 147, 444 (2000).
    47. S.-C. Pang, M.A. Anderson, J. Mater. Research, 15, 2096(2000).
    48. K.-W. Nam, K.-B. Kim, J. Electro. Soc., 153, A81 (2006).
    49. J.W. Long, A.L. Young, D.R. Rolison, J. Electro. Soc., 150, A1161(2003).
    50. 張仍奎“超高電容器錳氧化物電極之電化學製備法、材料特性以及擬電容行為” 博士學位論文, 國立成功大學(2005).
    51. J. Wei, N. Nagarajan, I. Zhitomirsky, J, Mater. Tech., 186, 356–361 (2007)
    52. M. Toupin, T, Brousse, D. Belanger, Chem. Mater 14, 3946(2002).
    53. S. Devaraj, N. Munichandraiah, Electrochem. Solid-State Lett. 8, A373–377 (2005).
    54. L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse, J. Phys., 12, 7270 (2008).
    55. V. Khomenko, E. Raymundo-Pin˜ ero, F. Be´guin, J. Power Sources 153, 183(2006).
    56. E. Raymundo-Pinero, V. Khomenko, E. Frackowiak, F. Beguin, J. Electrochem. Soc. 152, A229–235 (2005).
    57. C. Ye, Z.M. Lin, S.Z. Hui, J. Electrochem. Soc. 152, A1272–1278 (2005).
    58. H.Y. Lee, J.B. Goodenough, V. Manivannan, “Electrochemical capacitors with KCl electrolyte”, Comptes Rendus Chimie, vol.2, p.565 (1999).
    59. G. Lodi, E. Sivieri, A. DeBattisti and S. Trasatti, J. Electrochem. Soc., 8,135-143 (1978)
    60. C. Tsang, J. Kim, A. Manthiram, J. Solid State Chem., 137, 28(1998).
    61. Y. U. Jeong, A. Manthiram, J. Electrochem. Soc., 149, A1419 (2002).
    62. J. N. Broughton, M. J. Brett, Electrochem. Solid State Letters, 5, A279 (2002).
    63. B. Djurfors, J. N. Broughton, M. J. Brett, D. G. Ivey, J. Mater. Sci., 38, 4817(2003).
    64. J. N. Broughton, M. J. Brett, Electrochim. Acta, 49, 4439(2004).
    65. C. C. Hu and T. W. Tsou, Electrochimica Acta, 47, 3523(2002).
    66. J. K. Chang and W. T. Tsai, J. Appl. Electro., 34, 953(2004).
    67. T. Shinomiya, V. Gupta and N. Miura, Electrochimica Acta, 51, 4412–4419(2006).
    68. K. R. Prasad and N. Miura, Electrochem.Commu.,6 , 1004–1008 (2004).
    69. K.W. Nam, C.W. Lee, X.O. Yang, B.W. Cho, W.S. Yoon and K.B. Kim, J. Power Sources, 188, p. 323-331, (2009).
    70. S. Rodrigues, N. Munichandraiah and A. K. Shukla, J. Appl. Electrochem., 28, 1235-1241(1998).
    71. Z. Rogulski, H. Siwek, I. Paleska and A. Czerwinski, J. Electroanal. Chem. 543, p. 175 (2003).
    72. A. Oberlin, M. Endo and T. Koyama: J. Cryst. Growth 32, 335 (1976).
    73. S. Iijima, Nature, 354, 56(1991).
    74. S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi and M. Kohno, Chem. Phys. Lett. 360, 229 (2002).
    75. Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo and S. Maruyama, Chem. Phys. Lett., 385, 298 (2004).
    76. M. ENDO, T. HAYASHI, Y. A. KIM and H. MURAMATSU, Japanese J. Appl. Phys., Vol. 45, No. 6A, pp. 4883–4892, (2006).
    77. T. KOMUKAI, K. AOKI, H. FURUTA, M. FURUTA, K. OURA, Japanese J. of Appl Phys Vol. 45, No. 7, pp. 6043–6045,( 2006).
    78. John L. Hobdell, ”Optimization of Interdigital Capacitors”. IEEE Trans.Microwave Theory Tech., Vol. MTT-27, pp.788-791, (1979).
    79. Y. Q. Jiang, Q. Zhou, and L. Lin, IEEE Micro. Electro. Mechanical Systems, pp.587-590, 25-29 (2009).
    80. D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, H. Durou, J. Power Sources 195, 1266–1269(2010).
    81. Y.F. Ke, D.S. Tsai, Y.S. Huang, J. Mater. Chem., 15, 2122-2127 (2005).

    無法下載圖示 全文公開日期 2015/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE