簡易檢索 / 詳目顯示

研究生: 莊凱麟
Kai-Lin Jhuang
論文名稱: 對稱雙片壓電薄板之流-固耦合自由振動特性分析
Theoretical Analysis of Free Vibrations on Two Piezoelectric Plates Couple with Bounded Fluids
指導教授: 黃育熙
Yu-Hsi Huang
口試委員: 趙振綱
Ching-Kong Chao
馬劍清
Chien-Ching Ma
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 194
中文關鍵詞: 壓電平板理論疊加板理論聲場方程式流-固耦合共振頻率振動模態
外文關鍵詞: piezoelectric plate theory, superposition method, acoustic equation, fluid-structure interaction, resonant frequency, mode shape
相關次數: 點閱:235下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以理論解析雙片PZT壓電薄板與封閉可壓縮流體耦合問題,並應用能量法與力學平衡法分析圓柱與長方柱流-固耦合性系統的振動特性。第一部分討論的圓柱流-固耦合系統,流體為非黏滯、可壓縮的圓柱封閉流場,而固體的部分則為兩片壓電圓形薄板,以相同邊界接觸圓柱流場雙側,分別以全固定(clamped-edge)及全自由(free-edge)兩種邊界條件構成兩種流-固耦合系統,首先固體的位移函數計算應用壓電材料力學理論與力平衡方程式推導壓電薄板的統御方程式,流體的計算則是應用聲場方程式搭配流-固邊界連續條件求得流體受固體影響的運動行為,最後使用能量法計算圓柱流-固耦合系統的共振頻率(resonant frequency)、振動模態(mode shape)與流場壓力(pressure field)。第二部分討論的長方柱流-固耦合系統,流體亦為非黏滯、可壓縮的封閉流場,而固體部分則改為兩片壓電懸臂板,其理論模型將兩片壓電懸臂板以單邊固定之邊界條件置於長方柱封閉流場內的對稱位置,固體計算採用壓電薄板統御方程式與疊加板原理,流體的計算採用聲場方程式搭配流-固邊界連續條件求得流體受固體影響的運動行為,最後使用力學平衡法計算長方柱流-固耦合系統的共振頻率、振動模態與流場壓力。所有理論解析的結果使用有限元素軟體確立準確性,本研究所獲得結果亦探討流體特性與深度對流-固耦合振動行為的影響。


    This study investigated the vibration characteristics of two piezoelectric plates coupled with bounded compressible inviscid fluid by theoretical analysis. The Rayleigh–Ritz method and the coupled equation of hydrostatic equilibrium were developed to study two kinds of Fluid-Structure Interaction (FSI) system. The first FSI system in this study is two piezoelectric circular plates placed on the top and the bottom of a cylindrical container, respectively. The governing equation of piezoelectric circular plate is obtained by using the constitutive equations of piezoelectric plate and the equilibrium of mechanic. The governing equation of fluid is obtained from acoustic wave equation. The FSI between the piezoelectric plate and bounded fluid are obtained by employing the integral transformation technique. The frequency eigenfuction of the FSI system can be derived by the Rayleigh–Ritz method. Finally, the dynamic characteristic of the FSI system, including resonant frequencies, corresponding mode shapes, and pressure field of the fluid can be obtained from theoretical solution. The second FSI system in this study is two piezoelectric retangular cantilever plates immersed in the wall of rectangular container which is symmetric to the middle plane of container. The vibration displacement of piezoelectric retangular cantilever plate is obtained by the governing equation of piezoelectric plate and the superposition method. The governing equation of fluid is obtained from acoustic wave equation. The FSI between the piezoelectric plate and fluid are obtained by employing the integral transformation technique. The frequency eigenfuction of the FSI system can be derived by the coupled equation of hydrostatic equilibrium. Resonant frequencies, corresponding mode shapes, and pressure field of the fluid can be obtained by solving the characteristics equation.The vibration characteristics of theoretical analysis are verified with the results from finite element method(FEM). Furthermore, the theoretical solution was used to discuss the effects of the compressibility, density, depth of fluid on the resonant frequency.

    摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 IX 表目錄 XIII 符號引所 XIV 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 1 1.3內容介紹 4 第二章 壓電薄板理論介紹 5 2.1線性壓電理論介紹 5 2.2壓電薄板電學解析條件 9 2.3壓電薄板統御方程式推導及邊界條件 10 2.31統御方程式推導 11 2.32壓電薄板邊界條件 13 2.4壓電圓形薄板於固定邊界及自由邊界之自由振動解析 15 2.41統御方程式於圓柱座標之應用 15 2.43邊界條件於圓柱座標之應用 17 2.42固定邊界條件(Clamped-Edge) 18 2.43自由邊界(Free-Edge) 19 第三章 流-固耦合系統理論介紹 21 3.1流場理論介紹 21 3.2流體理論模型解析 23 3.21解析對稱封閉流場 26 3.22流-固耦合邊界條件 27 3.3能量法於流-固系統之振動分析 29 3.31壓電圓形薄板的動能 30 3.32壓電圓形薄板的應變能 31 3.33流體的動能與位能 31 3.4數值解析方法說明 35 第四章 壓電圓板耦合流體之理論與模擬結果討論 38 4.1壓電圓板耦合流體之分析模型 38 4.2流-固耦合系統之收斂性分析 42 4.3壓電圓板流-固耦合系統之流體性質問題探討 46 4.3.1壓電圓板於固定與自由邊界之共振頻率及模態 46 4.3.4圓柱腔體之聲學特性對流-固系統的影響. 70 4.4壓電圓板振動於空氣及水之流場特性探討 73 4.4.1壓電圓板固定邊界於空氣及水之共振耦合流場特性 74 4.4.2壓電圓板自由邊界於空氣及水之共振耦合流場特性 75 4.5壓電圓板於空氣及水之流場深度探討 108 4.6由能量法探討流-固耦合系統之共振特性 113 第五章 壓電矩形懸臂板於封閉腔體之流-固耦合振動 116 5.1 流-固耦合系統之分析模型 116 5.2 壓電矩形懸臂板應用疊加法之振動分析 117 5.2.1壓電矩形薄板的無因次化 117 5.2.1疊加懸臂板之共振分析 118 5.3封閉矩形流場與固體耦合之理論解析 133 5.3.1 封閉矩形流場理論模型介紹 133 5.4 力學平衡法之理論推導 142 第六章壓電懸臂板耦合流體之結果與討論 144 6.1壓電懸臂板耦合流體之共振頻率與振動模態比較 144 6.1.1空氣與水耦合之流體壓縮性探討 144 6.1.2空氣與水耦合之同反相共振特性比較 145 6.2壓電懸臂板耦合流體之壓力場比較 157 6.2.1流場壓縮特性探討 158 6.2.2同反相共振之流場特性比較 158 6.3壓電懸臂板耦合空氣及水之流場深度探討 168 6.3.1中間層流體深度探討 169 6.3.1外層流體深度探討 170 第七章 結論與未來展望 177 7.1 結論 177 7.2未來展望 179 參考文獻 181

    [1]S. S. Rao, “Vibration of Continuous Systems”, Wesley, Coral Gables, Florida, 2007.
    [2]A. W. Leissa, “The free vibration of rectangular plates”, Journal of Sound and Vibration, vol. 31, pp. 257-293, 1973
    [3]D. J. Gorman, “Free vibration analysis of cantilever plates by the method of superposition”, Journal of Sound and Vibration, vol. 49, pp.453-467, 1976
    [4]D. Avalos, P. A. A. Laura, R. H. Gutierrez, “On the influence of the poisson ratio on the nature frequency of free circular plates”, Journal of Sound and Vibration, vol. 132, pp.341-345, 1989
    [5]H. F. Tiersten, “Linear Piezoelectric Plate Vibrations”. New York: Plenum, 1969.
    [6]R. D. Mindlin, “High frequency vibrations of piezoelectric crystal plates”, International Journal of Solids and Structures, vol. 8, 1972
    [7]P. R Heyliger, G. Ramirez, “Free vibration of laminated circular piezoelectric plates and discs”, Journal of Sound and Vibration, vol.229, pp.935-956, 2000
    [8]吳亦莊,理論解析與實驗量測壓電平板的面外振動及特性探討,中華民國98年
    [9]M. K. Kwak, K. C. Kim, “Axisymmetric vibration of circular plates in contact with fluid”, Journal of Sound and Vibration, vol.146, pp.381-389, 1990
    [10]M. Amabili, A. Pasqualini, and G. Dalpiaz, “Natural frequencies and modes of free-edge circular plates vibrating in vacuum or in contact with liquid”, Journal of Sound and Vibration, vol. 188, pp. 685-699, 1995.
    [11]M. Amabili and M. K. Kwak, “Free vibrations of circular plates coupled with liquids: Revising the lamb problem”, Journal of Fluids and Structures, vol. 10, pp. 743-761, 1996.
    [12]M. K. Kwak, “Hydroelastic vibration of circular plates”, Journal of Sound and Vibration, vol. 201, pp. 293-303, 1997.
    [13]C. C. Liang, C. C. Liao, Y.S. Tai, W. H. Lai, “The free vibration analysis of submerged cantilever plates.” Ocean Engineering, vol. 28, pp. 1225–1245, 2000
    [14]M. Amabili, "Effect of finite fluid depth on the hydroelastic vibrations of circular and annular plates." Journal of Sound and Vibration, vol. 193, pp. 909-925, 1995
    [15]K.H. Jeong, “Free vibration of two identical circular plates coupled with bounded fluid”, Journal of Sound and Vibration, vol. 260, pp. 653-670, 2003
    [16]K.H. Jeong and K.J Kim, “Hydroelastic vibration of a circular plate submerged in a bounded compressible fluid”, Journal of Sound and Vibration, vol. 283, pp. 153-172, 2005
    [17]C.Y. Liao and C.C. Ma, “Vibration characteristics of rectangular plate in compressible inviscid fluid”, Journal of Sound and Vibration, vol. 362, pp. 228-251, 2016
    [18]閻建佑,應用於幫浦結構之對稱壓電雙層圓盤以同反相驅動的固液耦合振動特性分析與流率量測,中華民國104年
    [19]廖展誼,壓電圓板耦合可壓縮流體之動態特性研究,中華民國102年
    [20]廖展誼,矩形平板於流固耦合問題的振動特性與暫態波傳之理論分析、數值計算與實驗量測,中華民國105年
    [21]L.E Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, “Fundamentals of Acoustics 4th Edition”, John Wiley & Sons,Inc, 2000

    QR CODE