簡易檢索 / 詳目顯示

研究生: 楊虹凌
Hung-ling Yang
論文名稱: 微米振動結構與稀薄氣體薄膜流固交互作用之直接蒙地卡羅法模擬研究
Numerical Simulation of Fluid-structure Interaction Between Vibrating Microstructure and Thin Rarefied Gas Film Using DSMC
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 蘇裕軒
Yu-Hsuan Su
吳宗信
Jong-Shinn Wu
曾培元
Pei-Yuan Tzeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 120
中文關鍵詞: 直接蒙地卡羅模擬法流固交互作用微振動平板稀薄氣體品質因數
外文關鍵詞: DSMC, rarefied gas, fluid-structure interaction, vibrating micro-structure, quality factor
相關次數: 點閱:272下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微振動結構與稀薄氣體的流固交互作用對實際工業有很大範圍之應用,包括高頻的共振器、硬碟的讀寫頭及高敏感度的力量感測器等。因此藉由探討微振動結構與稀薄氣體薄膜間的流固交互作用,了解微結構之動力行為,將對於產業界與學術界有所幫助。本文旨以直接蒙地卡羅模擬法(DSMC)建立二維數值模型,探討稀薄氣體薄膜對微型振動平板的影響,了解氣體在不同壓力以及不同振動頻率下,所產生之黏滯阻尼力對品質因數(quality factor)的影響。經模擬結果顯示,品質因數將受到兩參數影響,一為氣體稀薄程度,品質因數會隨氣體壓力遞減而遞增;另一則為結構自然頻率,在相同氣壓下,較高頻之振動結構,其結構強度較強,較不易受到氣體阻尼力影響,更可得到理想的品質因數。其中,以平板振動頻率為43 KHz為例,當壓力高於1 torr以上時,由氣體阻尼控制結構運動行為,將不產生週期性的振動;反之,隨壓力降低結構振動行為持續越久,氣體壓力降至1 mtorr時,品質因數可達約2000。以此數值模擬動態結構的運動情形,證明DSMC方法對微結構能提出合理的預測,以利將來對於更複雜之幾何外型的結構進行性能預測。


    The study of fluid-structure interaction between a vibrating microstructure and a thin rarefied gas film is applied broadly in industry, for example, high frequency micromachine sensors, read/write heads of modern hard disk drives, highly sensitive strength detecting devices, and etc. In order to figure out the dynamic behavior of the rarefied gas film, a 2-D numerical model using Direct Simulation Monte Carlo (DSMC) method is established to investigate the relationship of a quality factor with the high frequency and low pressure limit. The numerical results show that the quality factor is inversely proportional to gas pressure, but proportional to the vibrating frequency. For example, for the case of the vibrating plate with the characteristic frequency 43 KHz, gas damping suppresses the vibration of the plate, when the pressure is higher than 1 torr. However, as the pressure is decreased to 1 mtorr, the quality factor becomes 2000. In terms of the obtained results, it is believed that the in-house DSMC method can predict the behavior of a vibrating microstructure reasonably.

    中文摘要 i 英文致謝 ii 致 謝 iv 目 錄 v 符號索引 viii 表目錄 xiii 圖目錄 xiv 第一章 導論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 微米振動結構之相關文獻 4 1.2.2 DSMC之相關文獻 5 1.3 論文架構 7 第二章 物理模型 9 2.1 氣體分子特性 9 2.1.1 巨觀與微觀 9 2.1.2 稀薄氣體 10 2.2 巨觀物理性質 11 2.3 彈性碰撞 14 2.3.1 動量與能量 14 2.3.2 VHS分子模型 15 2.4 氣體動力理論 16 2.4.1 速度分佈函數 16 2.4.2 波茲曼方程式(Boltzmann equation) 18 2.4.3 守恆方程式 19 2.4.4 H-theorem與熱平衡之速度分佈 21 2.5 小結 23 第三章 直接蒙地卡羅模擬法與模型驗證 25 3.1 直接蒙地卡羅模擬法之基本架構 25 3.1.1 DSMC之基本假設 26 3.1.2 網格設定 26 3.1.3 時步設定 27 3.1.4 固體邊界條件設定 27 3.1.5 取樣平均設定 28 3.2 直接蒙地卡羅模擬法支基本流程 28 3.2.1 初始設定 29 3.2.2 移動分子 30 3.2.3 分子排序 31 3.2.4 產生碰撞 31 3.3 模型驗證(I)-壓力驅動流(Hagen-Poiseuille flow) 33 3.3.1 問題描述 33 3.3.2 Navier-Stokes方程式解析解 33 3.3.3 參數設定 34 3.3.4 模擬結果與討論 35 3.4 模型驗證(II)-平板驅動穴流(lid-driven cavity flow) 37 3.4.1 問題描述 38 3.4.2 參數設定 38 3.4.3 模擬結果與討論 40 第四章 稀薄氣體與振動結構之交互作用與分析 43 4.1 問題描述 44 4.2 振動型態分析 45 4.3 品質因數 47 4.4 參數設定 47 4.5 移動邊界 48 4.5.1 強制移動邊界測試問題 50 4.5.2 結果與討論 51 4.6 數值結果分析 52 4.6.1 流場型態分析 52 4.6.2 品質因數分析 56 4.6.3 阻尼係數分析 58 4.7 小結 59 第五章 結論與建議 61 5.1 結論 61 5.2 建議 62 參考文獻 65

    [1] Bird, G.A., 1976 Molecular Gas Dynamics, Oxford University Press, Oxford.
    [2] Bird, G.A., 1994 Molecular Gas Dynamics and The Direct Simulation of Gas Flows, Oxford University Press, Oxford.
    [3] Gad-el-Hak, M., 1999 The fluid mechanics of microdevices - The Freeman scholar lecture. Journal of Fluids Engineering, vol.121, pp.5-33.
    [4] Yasumura, K.Y., Stowe, T.D., Chow, E.M., Pfafman, T., Kenny, T.W., Stipe, B.C., and Rugar, D., 2000 Quality factors in micron- and submicron-thick cantilevers. Journal of Microelectromechanical Systems, vol.9, pp.117-125.
    [5] Zook, J.D., Burns, D.W., Guckel, H., Sniegowski, J.J., Engelstad, R.L., and Feng, Z., 1992 Characteristics of polysilicon resonant microbeams. Sensors and Actuators A: Physical, vol.35, pp.51-59.
    [6] Hutcherson, S. and Ye, W., 2004 On the squeeze-film damping of micro-resonators in the free-molecule regime. Journal of Micromechanics and Microengineering, vol.14, pp.1726-1733.
    [7] Cho, Y.H., Pisano, A.P., and Howe, R.T., 1994 Viscous damping model for laterally oscillating microstructures. Journal of Microelectromechanical Systems, vol.3, pp.81-87.
    [8] Ye, W., Wang, X., Hemmert, W., Freeman, D., and White, J., 2003 Air damping in laterally oscillating microresonators: a numerical and experimental study. Journal of Microelectromechanical Systems, vol.12, pp.557-566.
    [9] Yang, J., Ono, T. and Esashi, M., 2002 Energy dissipation in submicrometer thick single-crystal silicon cantilevers. Journal of Microelectromechanical Systems, vol.11, pp.775-783.
    [10] Yang, J., Ono, T. and Esashi, M., 2001 Investigating surface stress: Surface loss in ultrathin single-crystal silicon cantilevers. Journal of Vacuum Science and Technology B, vol.19, pp.551-556.
    [11] Yang, J., Ono, T. and Esashi, M., 2000 Mechanical behavior of ultrathin microcantilever. Sensors and Actuators A: Physical, vol.82, pp.102-107.
    [12] Oran, E.S., Oh, C.K., and Cybyk, B.Z., 1998 Direct simulation Monte Carlo: Recent advances and applications. Annual Review of Fluid Mechanics, vol.30, pp.403-441.
    [13] Park, J.H., Bahukudumbi, P., and Beskok, A., 2004 Rarefaction effects on shear driven oscillatory gas flows: A direct simulation Monte Carlo study in the entire Knudsen regime. Physics of Fluids, vol.16, pp.317-330.
    [14] Piekos, E.S. and Breuer, K.S., 1996 Numerical modeling of micromechanical devices using the direct simulation Monte Carlo method. Journal of Fluids Engineering, vol.118, pp.464-469.
    [15] Zheng, Y., Garcia, A.L., and Alder, B.J., 2002 Comparison of kinetic theory and hydrodynamics for Poiseuille flow. Journal of Statistical Physics, vol.109, pp.495-505.
    [16] Xue, H., Fan, Q., and Shu, C., 2000 Prediction of micro-channel flows using direct simulation Monte Carlo. Probabilistic Engineering Mechanics, vol.15, pp.213-219.
    [17] Wu, J.S., Lee, F. and Wong, S.C., 2001 Pressure boundary treatment in micromechanical devices using the direct simulation Monte Carlo method. JSME International Journal Series B, vol.44, pp.439-450.
    [18] Nance, R.P., Hash, D.B., and Hassan, H.A., 1998 Role of boundary conditions in Monte Carlo simulation of microelectromechanical systems. Journal of Thermophysics and Heat Transfer, vol.12, pp.447-449.
    [19] Gallis, M.A. and Torczynski, J.R., 2004 An improved Reynolds-equation model for gas damping of microbeam motion. Journal of Microelectromechanical Systems, vol.3, pp.653-659.
    [20] Ghia, U., Ghia, K.N., and Shin, C.T., 1982 High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, vol.48, pp.387-411.
    [21] 王奕婷 2003, 流體在微渠道流動之數值模擬. 國立中山大學機械與機電工程研究所碩士論文.

    QR CODE