簡易檢索 / 詳目顯示

研究生: 陳彥明
Yan-ming Chen
論文名稱: 透輝石相玻璃陶瓷添加陶瓷粉體與銅電極共燒之微波介電特性改善之研究
Improvement of microwave dielectric properties at diopside-based glass-ceramics doped with ceramics by low temperature co-fired copper electrode process
指導教授: 周振嘉
Chen-chia Chou
口試委員: 廖文照
Wen-jhao Liao
馮奎智
Kuei-chih Feng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 102
中文關鍵詞: 透輝石相玻璃陶瓷微波介電高品質因子低介電常數趨近於零的共振溫度頻率係數銅電極共燒
外文關鍵詞: diopside-based glass-ceramics, high quality factor, low dielectric constant, near zero temperature coefficient of the resonan, microwave dielectric, cofiring with copper electrodes
相關次數: 點閱:282下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將探討透輝石相玻璃陶瓷(CaMgSi2O6) 材料系統,以開發出具低介電常數 (low dielectric constant, k)、高品質因子值(high quality factor, Qxf) 和具低共振溫度頻率係數(Temperature coefficient of the resonance frequency, τf) 之微波介電陶瓷材料,且期望此材料系統可於氮氣下之較低工作溫度(≦1000oC) 和銅電極進行共燒。
    首先為了提升CaMgSi2O6玻璃陶瓷之品質因子,配置不同莫耳比例之 (ZnxMg1-x)2SiO4(x=0~1) 陶瓷粉體,並且探討其基本特性,根據Mg2SiO4- Zn2SiO4二元相圖可得知共晶點大約在x=0.7附近,因此由實驗結果可得知 (Zn0.6Mg0.4)2SiO4、(Zn0.7Mg0.3)2SiO4、(Zn0.8Mg0.2)2SiO4於大氣下1250 oC/2hr 之燒結熱處理即可燒結緻密, 其中(Zn0.6Mg0.4)2SiO4於大氣下1250 oC、1300oC/2hr燒結時可得到品質因子(Qxf)將近45,000 GHz。
    另外本實驗也將不同莫耳比之10wt% (ZnxMg1-x)2SiO4(x=0~1) 陶瓷粉體添加至CaMgSi2O6玻璃陶瓷中,以期望能提升品質因子,並且於960 oC可燒結緻密,由實驗結果可得知當添加(Zn0.6Mg0.4)2SiO4陶瓷於大氣下960oC/2hr燒結時,品質因子可由11,233GHz提升至13,845 GHz,但 f值則是偏高的 -72 ppm/oC。
    然而f 值偏高會影響到在不同溫度下,元件之訊號發射與接受之品質,因此將在CaMgSi2O6玻璃陶瓷中添加CaTiO3 陶瓷以改善f值,並同時添加(ZnxMg1-x)2SiO4陶瓷以提升品質因子(Qxf),而由本實驗或先前研究發現,CaTiO3 陶瓷會溶於CaMgSi2O6玻璃陶瓷之中而無法完全成相的問題,但若再添加(ZnxMg1-x)2SiO4(x=0、6、7、8)時,能誘發結晶度提升,不但能提升其品質因子,且還能穩定CaTiO3陶瓷存在於CaMgSi2O6玻璃陶瓷中,進而能改善其f 值,而由XRD分析及unit cell軟體之晶格常數計算也可證明於CaMgSi2O6玻璃陶瓷中同時添加CaTiO3 陶瓷以及(ZnxMg1-x)2SiO4(x=0、6、7、8)陶瓷時,CaTiO3 陶瓷可明顯成相且晶胞體積膨脹較小,也推測較少的CaTiO3 陶瓷溶於其中,而當CaMgSi2O6玻璃陶瓷中同時添加8wt% CaTiO3 及8wt%(Zn0.6Mg0.4)2SiO4於氮氣下960oC/2hr熱處理時,可達到一組最佳之微波介電特性為k=8.62,Qxf =11,650GHz,f = -1.2ppm/oC。
    最後將CaMgSi2O6透輝石相玻璃陶瓷於氮氣下960oC/2hr與銅膠進行共燒,經由XRD分析銅並無氧化之情形,但銅電極與CaMgSi2O6玻璃陶瓷之交界面將會有銅化合物如Cu4MgO5、Ca2CuO3及Ca2MgSi2O7、Mg2SiO4、SiO2二次相產生,而由於Ca2MgSi2O7、Mg2SiO4都具有不錯的品質因子特性,能夠穩定住CaMgSi2O6玻璃陶瓷之品質因子特性不隨著其他二次相之產生而下降,因此與銅共燒後微波介電特性並無明顯變化,而後再於CaMgSi2O6透輝石相玻璃陶瓷中同時添加10 wt% (Zn0.6Mg0.4)2SiO4及8 wt% CaTiO3陶瓷於氮氣下960oC/2hr與銅膠進行共燒後可得到具低介電常數k=8.36及高品質因子Qxf = 9061GHz,且微波介電特性也不會因與銅膠共燒後而有明顯差異。


    In this study, diopside glass-ceramics (CaMgSi2O6) materials sintered at temperature below 1000 oC and co-fired with copper electrodes in a reducing atmosphere, which required a low dielectric constant (k), high quality factor (Q×f) and a near zero temperature coefficient of the resonance frequency (τf) as a microwave dielectric ceramic materials, were studied.
    First, in order to improve the quality factor of CaMgSi2O6 glass ceramics, configured with different molar proportions of (ZnxMg1-x)2SiO4 (x=0~1) ceramic powders, and explore its basic characteristics. According to the Mg2SiO4-Zn2SiO4 binary phase diagram the eutectic point about near x = 0.7, therefore the experimental results revealed that the densification temperature of (ZnxMg1-x)2SiO4 (x=0.6、0.7、0.8) ceramics can decrease to 1250oC. The quality factor values of (Zn0.6Mg0.4)2SiO4 can achieve nearly 45,000 GHz by sintering in air at temperature 1250 oC and 1300 oC for 2hr.
    Furthermore, adding different molar ratio of 10 wt% (ZnxMg1-x)2SiO4 (x=0~1) ceramic powders into CaMgSi2O6 glass ceramics to enhance the quality factor. From the experiment results, the quality factor values increased from 11,233 GHz to 13,845 GHz due to the addition of (Zn0.6Mg0.4)2SiO4 ceramics powders sintered in air at temperature 960 oC for 2hr.
    In order to improve the τf values to near 0ppm/oC and enhance quality factor values , CaTiO3 and (ZnxMg1-x)2SiO4 (x=0、0.6、0.7、0.8) was added to CaMgSi2O6 glass ceramics. Based on the previous studies, CaTiO3 soluted into the CaMgSi2O6 glass ceramics, so can’t improve the τf values. Experimental results showed that doped (ZnxMg1-x)2SiO4 ceramics can induce the crystallization of diopside glass-ceramics and caused CaTiO3 stability in the material system. Therefore, CaMgSi2O6 glass-ceramics added with 8wt% (Zn0.6Mg0.4)2SiO4 and 8wt% CaTiO3 ceramics sintered in reducing atmosphere at 960oC for 2hr shows excellent microwave dielectric properties : k=8.62,Qxf=11,650 GHz and f=-1.2 ppm/oC .
    At last , CaMgSi2O6 glass-ceramics with copper electrodes were co-fired in reducing atmosphere at 960oC for 2hr and analyzed to detect interactions between the glass-ceramics and electrodes. XRD analysis revealed Cu4MgO5, Ca2CuO3, Ca2MgSi2O7, Mg2SiO4 and SiO2 secondary phases, which appears in the interface after co-firing. Due to high quality factor of Ca2MgSi2O7 and Mg2SiO4 secondary phases, it does not induce degradation in quality factor values. CaMgSi2O6 glass-ceramics doped 10wt% (Zn0.6Mg0.4)2SiO4 and 8wt% CaTiO3 ceramics with copper electrodes were co-fired in reducing atmosphere at 960oC for 2hr shows microwave dielectric properties : k=8.36,Qxf=9,061 GHz.

    目錄 摘要 i Abstract iii 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2研究目的 3 第二章 文獻回顧與原理 5 2.1微波介電材料之發展與開發 5 2.1.1微波介電材料之發展 5 2.1.2 低溫共燒陶瓷系統之微波介電材料 9 2.1.3透輝石相玻璃陶瓷材料之系統開發 11 2.2微波介電材料的原理 13 2.2.1介電原理與性質 13 2.2.2品質因子 16 2.2.3共振頻率溫度係數 21 2.3玻璃陶瓷結晶成長機制 22 2.3.1玻璃的形成 22 2.3.2玻璃陶瓷之製程 25 2.3.3 成核機制 26 2.4透輝石結構之介紹 32 第三章 實驗流程與分析方法 35 3.1實驗流程 35 3.2實驗儀器與規格 46 3.3 材料性質量測方法 47 3.3.1 SEM/BEI 微觀分析 47 3.3.2 XRD相結構分析 47 3.3.3 密度量測 47 3.3.4 品質因子與介電常數量測 48 3.3.5 共振溫度頻率係數量測 49 第四章 結果與討論 51 4.1(ZnxMg1-x)2SiO4鎂鋅矽陶瓷粉體之微波介電特性研究 51 4.1.1 (ZnxMg1-x)2SiO4陶瓷粉體之XRD分析 52 4.1.2 (ZnxMg1-x)2SiO4陶瓷粉體之SEM分析 54 4.1.3(ZnxMg1-x)2SiO4陶瓷粉體之密度分析 57 4.1.4 (ZnxMg1-x)2SiO4陶瓷粉體之微波介電特性分析 58 4.2透輝石相玻璃陶瓷添加(ZnxMg1-x)2SiO4鎂鋅矽陶瓷共燒之微波介電特性研究 61 4.2.1透輝石相玻璃陶瓷添加 (ZnxMg1-x)2SiO4陶瓷粉體之XRD分析 61 4.2.2透輝石相玻璃陶瓷分別添加(ZnxMg1-x)2SiO4陶瓷粉體之微波介電特性分析 63 4.3透輝石相玻璃陶瓷添加(ZnxMg1-x)2SiO4及CaTiO3陶瓷粉體共燒之微波介電特性研究 65 4.3.1透輝石相玻璃陶瓷分別添加Mg2SiO4、(Zn0.6Mg0.4)2SiO4 、(Zn0.7Mg0.3)2SiO4 、 (Zn0.8Mg0.2)2SiO4 與CaTiO3陶瓷共燒之XRD分析 66 4.3.2透輝石相玻璃陶瓷分別添加Mg2SiO4、(Zn0.6Mg0.4)2SiO4 、(Zn0.7Mg0.3)2SiO4 、(Zn0.8Mg0.2)2SiO4 與CaTiO3陶瓷共燒之透輝石晶胞體積計算分析 70 4.3.3透輝石相玻璃陶瓷添加(ZnxMg1-x)2SiO4陶瓷粉體之密度及直徑收縮率量測 74 4.3.4透輝石相玻璃陶瓷分別添加Mg2SiO4、(Zn0.6Mg0.4)2SiO4 、(Zn0.7Mg0.3)2SiO4 、(Zn0.8Mg0.2)2SiO4 與CaTiO3陶瓷共燒之微波介電特性分析 76 4.4透輝石相玻璃陶瓷與銅膠於氮氣下共燒之微波介電特性研究 79 4.4.1銅膠之TGA分析 80 4.4.2透輝石相玻璃陶瓷與銅膠於氮氣下共燒之XRD分析 81 4.4.3透輝石相玻璃陶瓷與銅膠於氮氣下共燒之SEM分析 83 4.4.4透輝石相玻璃陶瓷與銅膠於氮氣下共燒之微波介電特性分析 88 第五章 結論 89 第六章 參考文獻 91 附錄 97

    1. R. J. Cava, “Dielectric materials for applications in microwave Communication.” Journal of Materials Chemistry., 11, 54-62, 2001.
    2. J. Wan, “Design of a 5.305 GHz dielectric resonator oscillator with simulation and optimization.” Journal of Electronic Science and Technology of China., 6, 342-345, 2008.
    3. J. Krupka, “Extremely high-Q factor dielectric resonators for Millimeter-wavapplications.” IEEE Transactions on Microwave theory and Techniques., 53, 702-712, 2005.
    4. I. Nicolaescu, A.Ioachim, I. Toacsan, I. Radu, and G. Banciu, “High k materials used to manufacture miniaturized dielectric antennas for military applications.” Journal of Optoelectronics and Advanced Materials., 9, 3592-3597, 2007.
    5. C. C. Chiang, S. F. Wang, Y. R. Wang, W. Cheng, and J. Wei,“Densification and microwavedielectric properties of CaO-B2O3-SiO2 system glass-ceramics.” Ceramics International., 34, 599-604, 2008.
    6. M. T. Sebastian, and H. Jantunen,“Low loss dielectric materials for LTCC Applicatio-ns: a review.” International Materials Reviews., 53, 57-90, 2008.
    7. 劉賾銘,“低介電之透輝石相玻璃陶瓷的合成及應用於LTCC氮氣製程下品質因子改善之研究”,國立台灣科技大學碩士論文,中華民國100年。
    8. 莊舜傑,“二次熱處理與鈦酸鈣添加對透輝石玻璃陶瓷微波介電材料的燒結與特性影響”,國立台灣科技大學碩士論文,中華民國101年。
    9. 柳邦凱,“透輝石相玻璃陶瓷添加陶瓷粉體共燒之微波介電特性改善與研究”,國立台灣科技大學碩士論文,中華民國102年。
    10. 李宜芝,“BaO-B2O3-SiO2 玻璃添加ZnO 對Ba-Ti-O 微波介電陶瓷低溫製程微觀結構與介電特性之影響”,國立台灣科技大學碩士論文,中華民國98年。
    11. J. M. Osepchuk, “A History of Microwave Heating Applications.” IEEE Trans.” Microwave Theory & Tech., 9, 1200-1224, 1984.
    12. R. D. Richtmyer,“Dielectric Resonator”,Japanese Journal of Applied Physics.” Japanese Journal of Applied Physics., 10, 391-398, 1939.
    13. A. Okaya, “The Rutile Microwave Resonator.” Proc. IRE., 45, 1921, 1960.
    14. H. M. O’Bryan, “A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss.” J. Thomson and J.K. Plourde, Journal of American Ceramic Society.,57, 450-453, 1974.
    15. M. H.Weng, and C.L.Huang, “Single Phase Ba2Ti9O20 Microwave dielectric Ceramics prepared by low temperature liquid phase Sintering.” Japanese Journal of Applied Physics., 39, 3528-3529, 2000.
    16. M. H. Weng, T. J. Liang, and C. L. Huang, “Lowering of sintering temperature and Microwave dielectric properties of BaTi4O9 ceramics prepared by the Polymeric precursor method.” Journal of the European Ceramic Society., 22, 1693-1698, 2002.
    17. H. Ohsato, S. Nishigaki, and T. Okuda, “Formation of solid solutions of new tungsten broze-type microwave dielectric compounds Ba6-3xR8+2xTi18O54(R=Nd and Sm,0≦x≦1) . ”Jpn.J.Appl.Phys.,32,4323,1993.
    18. H. Ohsato, S. Nishigaki, and T. Okuda, “Superlattice and Dielectric Properties of BaO-R2O3-TiO2 (R=La, Nd and Sm) Microwave Dielectric Compounds.” Japanese Journal Applied Physics., 31, 3136-3138, 1992.
    19. D. Kolar, S. GaBerseck, and B. Volavsec, “Synthesis and crystal chemistry of BaNd2Ti3O10, BaNd2Ti5O14 and Nd4Ti9O24, ”J.Solid State Chem. 38,158,1981.
    20. Feridoon Azough, Tristan Lowe and Robert Freer, “Control of Microwave Dielectric Properties in the System BaO•Nd2O3•4TiO2 - BaO•Al2O3•4TiO2.” Journal of Electroceramics, 15, 183–192, 2005.
    21. K. Wakino, K. Minai, and H. Tamura, “Microwave Characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators.” Journal of the American Ceramic Society., 67, 278-281, 1984.
    22. A. Ioachim, M. I. Toacsan, L. Nedelcu, M. G. Banciu, C. A. Dutu, E. Andronescu, and S. Jinga, “Thermal Treatments Effects on Microwave Dielectric Properties of Ba(Zn1/3Ta2/3)O3 Ceramics.” Romanian Journal of Information Science and Technology., 10, 261-268, 2007.
    23. M. Takata, and K. Kageyama, “Microwave Characteristics of A(B1/23+ B1/25+ )O3 Ceramics.” Journal of American Ceramic Society.Journal of American Ceramic Society., 72, 1955-1959, 1990.
    24. R. R. Tummala, “Ceramic and glass–ceramic packaging in the 1990s.” Journal of American Ceramic Society., 74, 895–908, 1991.
    25. N. Sakamoto, T. Motoki, and H. Sano, U. S. Pat.No. 6233134, 2001.
    26. T. Joseph, and M. T. Sebastian, “Microwave dielectric properties of alkaline earth orthosilicates Mg2SiO4 (M=Ba, Sr, Ca). ” Materials Letters., 65, 891-893, 2011.
    27. T. Sugiyama, T. Tsunooka, K. Kakimoto, and H. Ohsato, “Microwave dielectric properties of forsterite-based solid solutions.” Journal of the European Ceramic Society., 26, 2097-2100, 2006.
    28. G. K. Choi, J. R. Kim, S. H. Yoon, and K. S. Hong, “Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. ”Journal of the European Ceramic Society., 27, 3063-3067, 2007.
    29. S. Nishigaki, S. Yano, H. Kato, T. Hirai, and S. Nomura, “BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4.” Journal of American Ceramic Society., 71, C11-C17, 1988.
    30. S. H. Yoon, D.-W. Kim, S.-Y. Cho, and K. S. Hong, “Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. ” Journal of the European Ceramic Society., 26, 2051-2054, 2006.
    31. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, and H. Sugiura, “Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics.” Key Engineer Materials., 269, 199–202, 2004.
    32. Y. Guo, H. Ohsato and K. Kakimoto, “Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency.” Journal of the European Ceramic Society., 26, 1827-1830, 2006.
    33. M. E. Song, J. S. Kim, M. R. Joung, and S. Nahm, “Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics.” Journal of American Ceramic Society., 91, 2747-2750, 2008.
    34. Q. L. Zhang, H. Yang, and H. P. Sun, “A new microwave ceramic with low-permittivity for LTCC applications.” Journal of the European Ceramic Society., 28, 605–609, 2008.
    35. H. P. Wang, Q. L. Zhang, H. Yang, and H. P. Sun, “Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process.”Ceramics International., 34, 1405-1408, 2008.
    36. J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, and S.Nahm, “Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics.” Journal of the European Ceramic Society., 30, 375-379, 2010.
    37. J. Y. Ha, J. W. Choi, S. J. Yoon, D. J. Choi, K. H, Yoon, and H. J. Kim, “Microwave dielectric properties of Bi2O3-doped Ca[(Li1/3Nb2/3)1-xTix]O3 Ceramics.” Journal of the European Ceramic Society., 23, 2413–2416, 2003.
    38. M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, and J. H. Paik, Microstructure and “Microwave dielectric properties of the Li2CO3-Added Sr2V2O7 Ceramics.” Journal of American Ceramic Society., 93, 2132-2135, 2010.
    39. R. Lebourgeoisa, S. Dugueyb, J. P. Gannea, and J. M. Heintz, “Influence of V2O5 on the magnetic properties of nickel-zinc-copperferrites.” Journal of Magnetism and Magnetic Materials., 312, 328-330, 2007.
    40. S. F. Wang, T. C. K. Yang, Y. R. Wang, and Y. Kuromitsu, “Effect of Glass composition on the densification and dielectric properties of BaTiO3 ceramic.” Ceramics International., 27, 157-162, 2001.
    41. Q. L. Zhang, H. Yang, and J. X. Tong, “Low-temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5.” Material Letters., 60, 1188-1191, 2006.
    42. M. Ohsahi, H. Ogawa, A. Kan, and E. Tanaka, “Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic.” Journal of the European Ceramic Society., 25, 2877–2881, 2005.
    43. J. S. Kim, J. C. Lee, C. I. Cheon, and C. H. Lee, International Symposium on Research reactor and neutron science., Daejeon, Korea, 2005, 682–685.
    44. R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, “Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic.” Journal of the European Ceramic Society., 25, 2865–2870, 2005.
    45. R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, and A. Kan, “Low-temperature sintering microwave dielectric properties relations in Ba3(VO4)2 ceramic.” Journal of Alloys and Compounds., 424, 388-393, 2006.
    46. H. Jantunen, A. Uusima‥ki, R. Rautioaho, and S. Leppa‥vuori, “Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology. ”Journal of the European Ceramic Society., 20, 2331–2336, 2000.
    47. N. Mori, Y. Sugimoto, J. Harada, and Y. Higuchi, “Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies.” Journal of the European Ceramic Society., 26, 1925–1928, 2006.
    48. C. Zhong, Y. Yuan, S. Zhang, Y. Pang, and B. Tang, “Low-fired BiNbO4 microwave dielectric ceramics modified by CuV2O6 addition sintered in N2 atmosphere.” Journal ceramics silikaty., 54, 103-107, 2010.
    49. J. J. Jean, and Y. C. Fang, “Devitrification kinetics and mechanism of K2O–CaO–SrO–BaO-B2O3–SiO2 glass–ceramic.” Journal of American Ceramic Society., 84, 1354–1360, 2001.
    50. C. R. Chang, and J. J. Jean, “Crystallization kinetics and mechanism of low dielectric, low-temperature, cofirable CaO–B2O3–SiO2 glass–ceramics.” Journal of American Ceramic Society., 82, 1725–1732, 1999.
    51. C. L. Huang, M. H. Weng, “Improved high q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature.” Materials Research Bulletin., 36, 2741-2750, 2001.
    52. S. Nahmw, N. H. Nguyen, J. B. Lim, J. H. Paik and J. H. Kim, “Effect of Zn/Si Ratio on the Microstructural and Microwave Dielectric Properties of Zn2SiO4 Ceramics.” Journal of American Ceramic Society., 90, 3127-3130, 2007.
    53. K. X. Song, X. M. Chen and C. W. Zheng, “Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system.” Ceramics International., 34, 917-920, 2008.
    54. Bo Li, Bin Tang, Shuren Zhang, Hongmei Jiang, “Low-Temperature Sintered (ZnMg)2SiO4 Microwave Ceramics with TiO2 Addition And Calcium Borosilicate Glass.” State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China, Chengdu 610054, P. R China, 2010.
    55. E. R. Segnit and A. E. Holland, “The System MgO‐ZnO‐SiO2.” J. Am. Ceram. Soc., 48, 409-413, 1965.
    56. Vernon John著,蔡希杰譯,工程材料基礎篇第三版,俊傑書局股份有限公公司,2001。
    57. W. D. Kingery, H. K. Brown and D. R. Uhlmann, “Introduction to Ceramics.” Academic Press, John Wiley & Sons, 1975.
    58. 李俊遠,GPS微波介電材料與GPS天線設計概念,電子與材料雜誌,第14期。
    59. Kingery. Bowen. Uhlmann 著,陳皇鈞譯,陶瓷材料概論(下冊),曉園出版,1988.
    60. 吳朗,電子陶瓷-介電陶瓷,全欣出版,中華民國83年。
    61. 吳朗,電子陶瓷-絕緣陶瓷,全欣出版,中華民國83年。
    62. 陳文照,廖金喜,蔡明雄,蔡丕樁,材料科學與工程(第三版),全華圖書,1996。
    63. 汪建民主編,陶瓷技術手冊(下),中華民國粉末冶金協會,1994。
    64. T. I. Barry, J. M. Cox and R. Morrell,“Cordierite glass-ceramics-effect of TiO2 and ZrO2 content on phase sequence during heat treatment.” Journal of Materials Science, 13, 594-610, 1978.
    65. W. Holand, V. Rheinberger and M. Schweiger, “Control of nucleation in glass ceramics.” Phil. Trans. R. Soc. Lond., 361, 575-589, 2003.
    66. N. M. Chairman, “Nomenclature of pyroxenes.” Canadian Mineralogist., 27, 143-156, 1989.
    67. 王守誠,“澎湖群島斜輝石偉晶之化學特性在岩漿演化之應用”,國立成功大學碩士論文,中華民國96年。
    68. R. D. Shannon and C. T. Prewitt, “Effective Ionic Radii in Oxides and Fluorides.” Acta Cryst., B25, 925, 1969.
    69. P. Hudon, I. H. Jung and D. R. Baker, “Experimental Investigation and Optimization of Thermodynamic Properties and Phase Diagrams in the Systems CaO-SiO2,MgO-SiO2, CaMgSi2O6-SiO2 and CaMgSi2O6-Mg2SiO4 to 1.0 GPa.” Journal of Petrology., 46, 2005.
    70. W. A. Deer, R. A. Howie and J.Zussman 著,謝宇平、李鴻超、賀義興等譯校《造岩礦物﹐二卷A.單鏈矽酸鹽》(第二版)﹐地質出版社﹐北京﹐1983。
    71. K. C. Feng, C. C. Chou, C. S. Chen, L. W. Chu and H. Chen, “Phase evolution and electrical properties of copper-electroded BaTi4O9 materials with BZBS glass system in reducing atmosphere.” Ceramics International., 39, 321-324, 2013.
    72. S. Carbonin, G. Salviulol, R. Munno, “Crystal-Chemical of natural diopside: some geometrical indication of Si-Ti tetrahedral substitution.”, Mineralogy and petrology, Vol. 41, No.1, P. 1-10, 1989.
    73. RF-MLCC product note,高頻專用High Q Low ESR 貼片陶瓷電容器,華新科技股份有限公司, 2011.
    74. S. Takeoka , Y. Mizuno, “Effect of Internal Electrode Materials in Multilayer Ceramic Capacitors on Electrical Properties.”, Japanese Journal of Applied Physics ., 50, 2011.
    75. Kai-Xin Song, Zhi-Hua Ying Liang, Zheng,Zheng Liu and Hui-Bin Qin, “Phase Evolution and Microwave Dielectric Properites in the System of (Mg1-xCax)2SiO4 Ceramics.”, Advanced Materials Research Vols.152-153,801-804,2011.

    QR CODE