簡易檢索 / 詳目顯示

研究生: 鄭宜佳
Yi-Chia Cheng
論文名稱: 具高度有序金屬奈米管陣列及網格薄膜用於人類絨毛膜性腺激素表面增強拉曼檢測之研究
Highly-ordered metallic nanotube arrays and metal meshes for SERS detections of human chorionic gonadotropin (hCG)
指導教授: 朱瑾
Jinn Chu
賴志遠
James Lai
口試委員: 朱瑾
Jinn Chu
賴志遠
James Lai
江偉宏
Wei-Hung Chiang
姚栢文
Pak-Man Yiu
林宗宏
Zong-Hong Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 93
中文關鍵詞: 金屬玻璃薄膜金屬奈米管陣列表面增強拉曼散射基板人類絨毛膜性腺激素癌症檢測
外文關鍵詞: Metallic thin films, metallic nanotube arrays, SERS, human chorionic gonadotropin, disease diagnosis
相關次數: 點閱:194下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼散射(SERS)光譜相較於拉曼光譜具有微量量測的特性可將訊號增強數倍,不需要對樣品進行螢光或放射標記,從而避免了標記分子可能造成的影響,成功實現無標記的生物分子檢測。
    本研究是以SERS進行人絨毛膜促性腺激素 (hCG)之檢測,hCG主要用於檢測和監測妊娠及妊娠相關疾病,即使在沒有復發的臨床或組織學證據的情況下,復發性絨毛膜癌和睾丸生殖細胞腫瘤的治療通常也是在 hCG 水平升高的基礎上開始的。拉曼應用於此部分的研究目前多為使用抗體進行專一性檢測的免疫分析方式,其檢測樣品準備流程與ELISA檢測使用相同之三明治結構法,為使檢測更加快速及簡易,我們將嘗試透過表面增強拉曼基板進行無標記生物分子之檢測。
    本研究將分為兩大部分,首先透過鎢基金屬玻璃(WNiB)製作成金屬奈米管陣列,並於表面沉積一層純銀薄膜,此金屬奈米管陣列基板相比於其他化學合成之奈米銀顆粒,少去了拉曼 D、G band的背景干擾,使後續發展更多純物質的SERS檢測分析提供了更單純的分析背景,並且經過結構之參數調整,以Rhodamine 6G (R6G)作為檢測SERS之待測物得到最佳純銀薄膜厚度拉曼增強的效果。由此基板進行最低偵測極限濃度檢測(Limit of detection, LOD)可達到10-11 M,增強因子為1.01x108,同時也具備良好之實驗再現性。
    第二部分研究進一步將分別透過傳統拉曼檢測分子探針以及使用SERS基板對hCG直接進行拉曼檢測進行LOD的比較,透過第一部分使用部分實驗得到之最佳拉曼增強效果之基板,於分子探針的免疫分析裝置,我們成功的檢測到標記之抗體且hCG LOD可達20mIU/mL,此濃度已低於市面上驗孕棒快篩的偵測極限25mIU。於無標記純hCG的LOD檢測更可以達到20mIU/mL的程度。雖分子探針可提供檢測上的專一性,但於基板製備上較為繁瑣且須面臨分子探針標記抗體時數量的準確性以及再現性,同時須考慮複雜樣品間拉曼訊號的相互干擾,相較之下,SERS基板直接進行hCG的拉曼檢測更加快速、簡易以及準確。


    Surface enhanced Raman scattering (SERS) spectroscopy is an affordable tool. It offers highly sensitive, timely, accurate, and nondestructive information that demonstrates great potential in clinical diagnosis due to its minor susceptibility to environmental factors[1]. A biomolecule's vibrational and rotational information serves as unique Raman fingerprint for differentiation of its components and molecular structure[2]. It is possible to directly utilize the Raman spectra from biomolecules for multiplexed analysis.
    An important function of human chorionic gonadotropin (hCG) is to detect and monitor pregnancy and pregnancy-related conditions. Recurrent choriocarcinomas and testicular germ cell tumors are often treated based on increased hCG levels even when there is no clinical or histologic evidence of recurrence. There are mainly immunoassay methods for specific detection used in research on Raman applied to this part of this study. In order to detect the samples, the sandwich structure method is used in the same manner as in the ELISA process. To speed up and simplify the detection process, we will attempt to pass through surface-enhanced Raman substrates so that biomolecules can be detected without the need for labeling.
    This research will be divided into two parts. First, metal nanotube arrays are fabricated through tungsten-based metallic glass (WNiB), followed by the deposit of a layer of pure silver thin film on the surface. Compared with other chemically synthesized nano-silver particles, this metal nanotube array substrate reduces the background interference of Raman D and G bands, enabling the subsequent development of pure SERS. The detection analysis provides a simpler analysis background, and after adjusting the parameters of the structure, Rhodamine 6G (R6G) is used as the analyte for SERS detection to obtain the best Raman enhancement effect of pure silver film thickness. There is an excellent reproducibility of results in experiments conducted on this substrate, as well as a limit of detection (LOD) of 10-11 M and an enhancement factor of 1.01x108.
    In the second part of the study, we will compare the LOD through the Raman detection molecular probe and the direct Raman detection of hCG using the SERS substrate. The first part of the experiment involves the use of the substrate with the best Raman enhancement effect obtained in some experiments in conjunction with the immunoassay device of the probe. A labeled antibody was successfully detected, and the hCG LOD reached 20mIU/mL, which is lower than the detection limit of 25mIU for the quick screening of pregnancy test sticks currently available. LOD detection of unlabeled pure hCG is even possible at 20mIU/mL. It is true that molecular probes can provide specificity in detection, but they are considerably more complex to prepare, and they must take into account the accuracy and reproducibility of the number of antibodies labeled with molecular probes. Furthermore, it is necessary to take into account that Raman signals from complex samples can interfere with each other. However, Raman detection of hCG directly on the SERS substrate is significantly faster, more convenient, and more accurate.

    Abstract III Acknowledgements V Content IV List of Figures IV List of Tables VIII Chapter 1 Introduction 1 1.1 Objectives of study 2 Chapter 2 Literature Review 3 2.1 Optical properties of plasmonic nanostructure 3 2.1.1 Surface plasmon resonance (SPR) 4 2.1.2 Localized surface plasmon resonance (LSPR) 4 2.2 Raman spectroscopy 5 2.2.1 Surface Enhancement Raman Scattering (SERS) 7 2.2.2 Chemical enhancement (CM) 8 2.2.3 Electromagnetic enhancement (EM) 9 2.3 Substrate types for SERS enhancement 10 2.3.1 Three-dimensional nanostructure 11 2.3.2 Silver thickness 12 2.3.3 Nanoparticle 13 2.4 Nanotube Arrays 14 2.4.1 Unique properties of Metallic Glass 14 2.4.2 Metallic Nanotube Arrays (MeNTAs) 16 2.4.3 MGNT arrays applied in SERS application 16 2.5 Human chorionic gonadotropin 19 2.5.1 Tertiary structure protein 19 2.6 Liquid SERS application 20 2.7 Dye-labeled immunoassay 22 2.7.1 Polydopamine 22 2.7.2 SERS active substrates 24 2.7.3 PDA application in SERS 25 2.7.4 Rhodamine 6G labeled antibody 25 Chapter 3 Experimental Procedure 27 3.1 Metallic Nanotube arrays (MeNTAs) fabrication 27 3.1.1 Substrate and photoresist preparations 28 3.1.2 Thin-film Metallic Glass (TFMG) deposition 29 3.1.3 Photoresist removal 30 3.2 Fabrication of MeNTAs active substrate 30 3.3 Characterizations of metallic nanotube arrays (MeNTAs) 34 3.3.1 Scanning electron microscope (SEM) 34 3.3.2 Energy Dispersive Spectrometer (EDS) 34 3.3.3 X-ray diffraction (XRD) 34 3.3.4 Micro-Raman spectrometer 35 3.4 Characterizations of Poly dopamine (PDA) thin film 36 3.4.1 Wettability (Water contact angle) 36 3.4.2 X-ray photoelectron spectroscopy (XPS) 37 3.4.3 Surface roughness analysis (AFM) 37 3.5 Characterization of R6G labeled Antibody 38 3.5.1 Conjugation of R6G labeled antibody 38 3.5.2 Desalting and Buffer Exchange 39 3.5.3 UV-visible 39 Chapter 4 Results and Discussion 41 4.1 Triangular MeNTA of Tungsten with Ag coating 41 4.1.1 Surface morphology (SEM) 41 4.1.2 Energy Dispersive Spectrometer (EDS) 47 4.1.3 Wettability (Water contact angle) 48 4.1.4 Crystallographic analysis (XRD) 48 4.1.5 Raman spectra for MeNTAs and film 49 4.1.6 Reproducibility of W-based MeNTAs with Ag coating 53 4.1.7 Limit of detection (LOD) of W-based MeNTAs/ Ag 54 4.2 Polydopamine 57 4.2.1 Surface morphology (SEM) 57 4.2.2 Wettability (Water contact angle) 58 4.2.3 X-ray photoelectron spectroscopy (XPS) 60 4.2.4 Surface roughness analysis (AFM) 61 4.3 Raman spectra of sandwich structure immunoassay 64 4.3.1 Raman spectra of R6G labeled antibody to detect hCG 64 4.4 Raman spectroscopy of liquid immunoassay 67 4.4.1 Raman spectra of Bovine Serum Albumin 67 4.4.2 Raman spectra of Human chorionic gonadotropin 68 4.5 MeNTAs SERS for Selenium detection 70 Chapter 5 Conclusions 73 5.1 Future Work 74 Chapter 6 References 75

    1. Kao, Y.-C., et al., Multiplex Surface-Enhanced Raman Scattering Identification and Quantification of Urine Metabolites in Patient Samples within 30 min. ACS Nano, 2020. 14(2): p. 2542-2552.
    2. Lane, L.A., X. Qian, and S. Nie, SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chemical Reviews, 2015. 115(19): p. 10489-10529.
    3. Huh, Y.S., A.J. Chung, and D. Erickson, Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluidics and nanofluidics, 2009. 6: p. 285-297.
    4. Lausted, C., et al., SPR imaging for high throughput, label-free interaction analysis. Combinatorial chemistry & high throughput screening, 2009. 12(8): p. 741-751.
    5. Shanmukh, S., et al., Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano letters, 2006. 6(11): p. 2630-2636.
    6. Fu, Y., et al., Surface-enhanced Raman spectroscopy: A facile and rapid method for the chemical component study of individual atmospheric aerosol. Environmental Science & Technology, 2017. 51(11): p. 6260-6267.
    7. Chu, J.P., K.-W. Tseng, and C.-Y. Liu, Large-area alloy nanotube arrays with highly-ordered periodicity: Fabrication and characterization. Materials & Design, 2021. 209: p. 109998.
    8. Jiang, Z.-L., M.-J. Zou, and A.-H. Liang, An immunonanogold resonance scattering spectral probe for rapid assay of human chorionic gonadotrophin. Clinica Chimica Acta, 2008. 387(1-2): p. 24-30.
    9. Teixeira, S., et al., Label-free human chorionic gonadotropin detection at picogram levels using oriented antibodies bound to graphene screen-printed electrodes. Journal of Materials Chemistry B, 2014. 2(13): p. 1852-1865.
    10. Lu, Y.C., et al., Wafer-scale SERS metallic nanotube arrays with highly ordered periodicity. Sensors and Actuators B-Chemical, 2021. 329: p. 7.
    11. Stockman, M.I., Nanoplasmonics: past, present, and glimpse into future. Optics express, 2011. 19(22): p. 22029-22106.
    12. Koya, A.N., et al., Nanoporous metals: From plasmonic properties to applications in enhanced spectroscopy and photocatalysis. ACS nano, 2021. 15(4): p. 6038-6060.
    13. Wang, L., M. Hasanzadeh Kafshgari, and M. Meunier, Optical properties and applications of plasmonic‐metal nanoparticles. Advanced Functional Materials, 2020. 30(51): p. 2005400.
    14. Wilson, A.M., et al., In vivo laser-mediated retinal ganglion cell optoporation using KV1. 1 conjugated gold nanoparticles. Nano letters, 2018. 18(11): p. 6981-6988.
    15. Shpacovitch, V. and R. Hergenröder, Surface plasmon resonance (SPR)-based biosensors as instruments with high versatility and sensitivity. 2020, MDPI. p. 3010.
    16. Pitarke, J., et al., Theory of surface plasmons and surface-plasmon polaritons. Reports on progress in physics, 2006. 70(1): p. 1.
    17. Anker, J.N., et al., Biosensing with plasmonic nanosensors. Nature materials, 2008. 7(6): p. 442-453.
    18. Mayer, K.M. and J.H. Hafner, Localized surface plasmon resonance sensors. Chemical reviews, 2011. 111(6): p. 3828-3857.
    19. Jones, R.R., et al., Raman Techniques: Fundamentals and Frontiers. Nanoscale Res Lett, 2019. 14(1): p. 231.
    20. Kaur, H., Instrumental methods of chemical analysis. 2010: Pragati Prakashan.
    21. Jickells, S. and A. Negrusz. Clarke's analytical forensic toxicology. in Annales de Toxicologie Analytique. 2008. EDP Sciences.
    22. Parobek, D., et al., Synthesizing and characterizing graphene via Raman spectroscopy: an upper-level undergraduate experiment that exposes students to Raman spectroscopy and a 2D nanomaterial. Journal of Chemical Education, 2016. 93(10): p. 1798-1803.
    23. Schlucker, S., Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl, 2014. 53(19): p. 4756-95.
    24. Langer, J., et al., Present and Future of Surface-Enhanced Raman Scattering. Acs Nano, 2020. 14(1): p. 28-117.
    25. Zhang, C., et al., SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sensors and Actuators B-Chemical, 2018. 258: p. 163-171.
    26. Chen, S.N., et al., Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering. Carbon, 2015. 81: p. 767-772.
    27. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
    28. Kneipp, K., et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997. 78(9): p. 1667-1670.
    29. Fong, K.E. and L.-Y.L. Yung, Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale, 2013. 5(24): p. 12043-12071.
    30. Le Ru, E., P. Etchegoin, and M. Meyer, Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. The Journal of chemical physics, 2006. 125(20): p. 204701.
    31. Kim, J., et al., Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS). Frontiers in Chemistry, 2019. 7: p. 7.
    32. Brolo, A.G., D.E. Irish, and B.D. Smith, Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions. Journal of Molecular Structure, 1997. 405(1): p. 29-44.
    33. Clark, R.J.H. and T.J. Dines, Resonance Raman Spectroscopy, and Its Application to Inorganic Chemistry. New Analytical Methods (27). Angewandte Chemie International Edition in English, 1986. 25(2): p. 131-158.
    34. Ding, S.Y., et al., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2017. 46(13): p. 4042-4076.
    35. Ding, S.-Y., et al., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials, 2016. 1(6): p. 16021.
    36. Shafer-Peltier, K.E., et al., Toward a glucose biosensor based on surface-enhanced Raman scattering. Journal of the American Chemical Society, 2003. 125(2): p. 588-593.
    37. Nguyen, A.H., J.U. Lee, and S.J. Sim, Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing. Nanoscale, 2016. 8(8): p. 4599-4607.
    38. Wang, Y. and J. Irudayaraj, A SERS DNAzyme biosensor for lead ion detection. Chemical Communications, 2011. 47(15): p. 4394-4396.
    39. Qian, X., et al., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature biotechnology, 2008. 26(1): p. 83-90.
    40. Stokes, R.J., et al., Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum. Applied spectroscopy, 2008. 62(4): p. 371-376.
    41. Douglas, P., et al., Immunoassay for P38 MAPK using surface enhanced resonance Raman spectroscopy (SERRS). Analyst, 2008. 133(6): p. 791-796.
    42. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007. 58: p. 267-297.
    43. Sagle, L.B., et al., Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine, 2011. 6(8): p. 1447-1462.
    44. Kim, S., et al., Patterned arrays of Au rings for localized surface plasmon resonance. Langmuir, 2006. 22(17): p. 7109-7112.
    45. Liu, L., S. Ouyang, and J. Ye, Gold‐nanorod‐photosensitized titanium dioxide with wide‐range visible‐light harvesting based on localized surface plasmon resonance. Angewandte Chemie International Edition, 2013. 52(26): p. 6689-6693.
    46. Nguyen, A.H., et al., Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device. Biosensors and Bioelectronics, 2015. 70: p. 358-365.
    47. Butler, H.J., et al., Using Raman spectroscopy to characterize biological materials. Nature protocols, 2016. 11(4): p. 664-687.
    48. Çelik, Y. and K. Ayşe, Three dimensional porous Expanded Graphite/Silver Nanoparticles nanocomposite platform as a SERS substrate. Applied Surface Science, 2021. 568: p. 150946.
    49. Li, Y., et al., Facile fabrication and SERS performance of polymer/Ag core-shell microspheres via the reverse breath figure accompanied by in situ reduction. Polymer, 2022. 253: p. 125003.
    50. Sahu, B.K., et al., Optimized Au NRs for efficient SERS and SERRS performances with molecular and longitudinal surface plasmon resonance. Applied Surface Science, 2021. 537: p. 147615.
    51. Zhou, Z., et al., Silver nanocubes monolayers as a SERS substrate for quantitative analysis. Chinese Chemical Letters, 2021. 32(4): p. 1497-1501.
    52. Cecchini, M.P., et al., Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nature materials, 2013. 12(2): p. 165-171.
    53. Huang, Z., et al., Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Advanced Materials, 2010. 22(37): p. 4136-4139.
    54. Hatab, N.A., et al., Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano letters, 2010. 10(12): p. 4952-4955.
    55. Chen, B., et al., Green Synthesis of Large-Scale Highly Ordered Core@Shell Nanoporous Au@Ag Nanorod Arrays as Sensitive and Reproducible 3D SERS Substrates. ACS Applied Materials & Interfaces, 2014. 6(18): p. 15667-15675.
    56. Lee, C., et al., Thickness of a metallic film, in addition to its roughness, plays a significant role in SERS activity. Scientific reports, 2015. 5(1): p. 1-10.
    57. Streletskiy, O., et al., Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation. Materials, 2022. 15(21): p. 7721.
    58. Chu, J.P., et al., Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films, 2012. 520(16): p. 5097-5122.
    59. Du, X., et al., Designing Ductile Zr-Based Bulk Metallic Glasses with Phase Separated Microstructure. Advanced Engineering Materials, 2009. 11(5): p. 387-391.
    60. Chu, J.P., et al., Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating. Acta Materialia, 2012. 60(6-7): p. 3226-3238.
    61. Chu, J.P., et al., Thin film metallic glasses: Preparations, properties, and applications. JOM, 2010. 62(4): p. 19-24.
    62. Chu, J.P., et al., Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects. Surface and Coatings Technology, 2011. 205(16): p. 4030-4034.
    63. Madge, S., et al., Novel W-based metallic glass with high hardness and wear resistance. Intermetallics, 2014. 47: p. 6-10.
    64. Tseng, K.-W., Elemental metal and alloy nanotube arrays with highly ordered periodicity: Fabrication and characterizations. 2020, National Taiwan University of Science and Technology.
    65. Lu, Y.-C., Metallic-Glass Nanotube Arrays as a Surface-Enhanced Raman Scattering (SERS)-active Substrate for Crystal Violet Adsorption. 2019, National Taiwan University of Science and Technology.
    66. Yeh, Y.-J., et al., Plasmonic Au loaded semiconductor-engineered large-scale metallic nanostructure arrays for SERS application. Surface and Coatings Technology, 2022. 436.
    67. Fang, Y., N.-H. Seong, and D.D. Dlott, Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science, 2008. 321(5887): p. 388-392.
    68. Yang, Y.-X. and J.P. Chu, Cost-effective large-area Ag nanotube arrays for SERS detections: Effects of nanotube geometry. Nanotechnology, 2021.
    69. Alabastri, A., et al., Extraordinary light-induced local angular momentum near metallic nanoparticles. ACS nano, 2016. 10(4): p. 4835-4846.
    70. Hasna, K., et al., Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates. Nano Research, 2016. 9(10): p. 3075-3083.
    71. Lapthorn, A., et al., Crystal structure of human chorionic gonadotropin. Nature, 1994. 369(6480): p. 455-461.
    72. Halabi, N., et al., Protein sectors: evolutionary units of three-dimensional structure. Cell, 2009. 138(4): p. 774-786.
    73. El Tayar, N., et al., Octan-1-ol–water partition coefficients of zwitterionic α-amino acids. Determination by centrifugal partition chromatography and factorization into steric/hydrophobic and polar components. Journal of the Chemical Society, Perkin Transactions 2, 1992(1): p. 79-84.
    74. Wedemeyer, W.J., et al., Disulfide bonds and protein folding. Biochemistry, 2000. 39(15): p. 4207-4216.
    75. d’Hauterive, S.P., et al., Human chorionic gonadotropin and early embryogenesis. International Journal of Molecular Sciences, 2022. 23(3): p. 1380.
    76. Zhang, Y., et al., Recent progress on liquid biopsy analysis using surface-enhanced Raman spectroscopy. Theranostics, 2019. 9(2): p. 491.
    77. Akgönüllü, S. and A. Denizli, Recent advances in optical biosensing approaches for biomarkers detection. Biosensors and Bioelectronics: X, 2022: p. 100269.
    78. Kasera, S., et al., Quantitative multiplexing with nano-self-assemblies in SERS. Scientific reports, 2014. 4(1): p. 6785.
    79. Abell, J., et al., Fabrication and characterization of a multiwell array SERS chip with biological applications. Biosensors and Bioelectronics, 2009. 24(12): p. 3663-3670.
    80. Lin, Z. and L. He, Recent advance in SERS techniques for food safety and quality analysis: A brief review. Current Opinion in Food Science, 2019. 28: p. 82-87.
    81. Ma, L., et al., SERS quantitative detection of trace human chorionic gonadotropin using a label‐free Victoria blue B as probe in the aggregated immunonanogold sol substrate. Luminescence, 2015. 30(6): p. 790-797.
    82. Ku, S.H., J.S. Lee, and C.B. Park, Spatial control of cell adhesion and patterning through mussel-inspired surface modification by polydopamine. Langmuir, 2010. 26(19): p. 15104-15108.
    83. Salazar, P., M. Martín, and J. González-Mora, Polydopamine-modified surfaces in biosensor applications. Polymer science: research advances, practical applications and educational aspects. Formatex Research Center SL (Spain), 2016: p. 385-396.
    84. Patel, K., et al., Polydopamine films change their physicochemical and antimicrobial properties with a change in reaction conditions. Physical Chemistry Chemical Physics, 2018. 20(8): p. 5744-5755.
    85. Luo, S.-C., et al., Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosensors and Bioelectronics, 2014. 61: p. 232-240.
    86. Li, T.-D., et al., An ultrasensitive polydopamine bi-functionalized SERS immunoassay for exosome-based diagnosis and classification of pancreatic cancer. Chemical science, 2018. 9(24): p. 5372-5382.
    87. Deb, S.K., et al., Detection and relative quantification of proteins by surface enhanced Raman using isotopic labels. Journal of the American Chemical Society, 2008. 130(30): p. 9624-9625.
    88. Yang, Y., et al., Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. The Journal of Physical Chemistry C, 2007. 111(26): p. 9095-9104.
    89. Lee, S.Y., et al., Dispersion in the SERS enhancement with silver nanocube dimers. ACS nano, 2010. 4(10): p. 5763-5772.
    90. Lee, H., et al., Mussel-inspired surface chemistry for multifunctional coatings. science, 2007. 318(5849): p. 426-430.
    91. d'Ischia, M., et al., Chemical and structural diversity in eumelanins: unexplored bio‐optoelectronic materials. Angewandte Chemie International Edition, 2009. 48(22): p. 3914-3921.
    92. Dreyer, D.R., et al., Elucidating the structure of poly (dopamine). Langmuir, 2012. 28(15): p. 6428-6435.
    93. Huang, Z.-H., et al., Polydopamine ultrathin film growth on mica via in-situ polymerization of dopamine with applications for silver-based antimicrobial coatings. Materials, 2021. 14(3): p. 671.
    94. Lo, Y.-H., S.-C. Li, and H. Hiramatsu, Sampling unit for efficient signal detection and application to liquid chromatography-Raman spectroscopy. New Journal of Chemistry, 2021. 45(9): p. 4128-4134.
    95. Candeloro, P., et al., Raman database of amino acids solutions: A critical study of Extended Multiplicative Signal Correction. Analyst, 2013. 138(24): p. 7331-7340.
    96. Koren, G., et al., Proximity-induced superconductivity in topological Bi 2 Te 2 Se and Bi 2 Se 3 films: Robust zero-energy bound state possibly due to Majorana fermions. Physical Review B, 2011. 84(22): p. 224521.
    97. Kizovský, M., et al., Raman microspectroscopic analysis of selenium bioaccumulation by green alga Chlorella vulgaris. Biosensors, 2021. 11(4): p. 115.

    QR CODE