簡易檢索 / 詳目顯示

研究生: 哈里
Hariharan Rajendran
論文名稱: 氧化鋅粒徑對火花電漿燒結法製備之AZ91鎂合金機械性質的影響
Effect of particle size of ZnO on mechanical properties of aZ91 Mg alloy prepared by Spark Plasma Sintering
指導教授: 丘群
Chun Chiu
口試委員: 蔡秉均
Ping-Chun Tsai
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 83
中文關鍵詞: AZ91鎂合金氧化鋅顆粒微觀結構機械性質
外文關鍵詞: AZ91 Mg alloy, ZnO particles, Microstructure, Mechanical properties
相關次數: 點閱:328下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們以火花電漿燒結(Spark Plasma Sintering)製備添加不同粒徑大小的ZnO (2.4 μm and 160 nm) 和添加不同重量百分比(1 wt% and 5 wt%) 的AZ91鎂合金,並研究其微觀結構及機械性質。微觀結構的觀察指出,添加微米及奈米等級的ZnO顆粒會明顯地降低AZ91鎂基複合材料的晶粒尺寸。在添加5 wt%微米等級的ZnO顆粒後,AZ91鎂合金的平均晶粒尺寸會從46.14 nm降至38.16 nm 。此外,添加5 wt.%奈米等級的ZnO顆粒AZ91鎂合金的平均晶粒尺寸會從46.14 nm 降至 33.61 nm。在火花電漿燒結製程中,AZ91鎂合金的孔隙率為13.66 %, 在添加5wt.% 微米等級的ZnO以及5wt.% 奈米等級的ZnO,孔隙率分別減少至9.42 %和8.72 %。添加微米等級及奈米等級的ZnO顆粒後,AZ91鎂合金的硬度值分別從138 HV提升至151 HV和153 HV。微米及奈米等級的ZnO顆粒添加,可提升AZ91鎂合金的極限抗壓強度(UTS)分別從256 MPa提升至328及351 MPa,破斷應變則由3.6 % 分別提升至3.9 %及4.2 %。因此,本次實驗結果顯示,添加 5 wt.%奈米等級ZnO顆粒的AZ91鎂基複材之機械性質優於添加5 wt.%微米等級ZnO顆粒的複材。


    In this work, AZ91 magnesium alloys reinforced in different size (2.4 μm and 160 nm) of ZnO particles with different weight percentage (1 and 5) were fabricated by spark plasma sintering (SPS) and their microstructure and mechanical properties were studied. From the microstructure observation, it was found that adding micro (m-) and nano (n-) ZnO particles into the AZ91 Mg matrix significantly decreased the grain size of the AZ91 Mg composites. After addition of 5 wt% m-ZnO, the average grain size of the AZ91 Mg alloy decreased from 46.14 to 38.16 nm. Furthermore, after the addition of 5 wt% n-ZnO, the average grain size of the AZ91 Mg alloy decreased from 46.14 to 33.61nm. In SPS process, the porosity of AZ91 Mg alloy is 13.66%, after addition of 5 wt% m-ZnO and 5 wt% n-ZnO particles, the porosity of AZ91 Mg alloy is reduced from 13.66% to 9.42% and 8.72% respectively. The presence of micro and nano-ZnO particles was used to enhance the hardness value of AZ91 Mg alloy from 138 HV to 151 HV and 153 HV. The reinforcement of micro and nano-ZnO particles increased the ultimate tensile strength (UTS) of AZ91 Mg from 256 MPa to 328 and 351 MPa, the strain increased from 3.6% to 3.9% and 4.2%. Thus, the results indicate that the addition of 5 wt% n-ZnO in AZ91 Mg alloy has superior mechanical properties compared to that of 5 wt% m-ZnO particles in AZ91 Mg alloy.

    Table of contents ABSTRACT (摘要)………………………………………………………………………………………………i ABSTRACT ii ACKNOWLEDGEMENT iii List of contents iv List of figures viii List of tables xi 1. INTRODUCTION 1 1.1. Forwards 1 1.1.1. Overview 1 1.1.2. Types of MMCs 2 1.1.3. Matrix Reinforcement 4 1.1.4. Reinforcement 5 1.2. Thesis layout 5 1.3. Motivation of research Importance of AZ91 Magnesium alloys 6 2. PRINCIPLES AND LITERATURE REVIEW 7 2.1 Introduction of Magnesium…………………………………………………………….7 2.2 Magnesium alloy MMCs……………………………………………………………….7 2.3. Importance of AZ91 Magnesium alloys…………………………………………….....8 2.4. Fabrication methods of composite materials………………………….……………….9 2.4.1. Solid state techniques 9 2.4.1.1 Hot pressing 10 2.4.1.2 Spark plama sintering 11 2.4.2. Liquid state techniques 12 2.4.2.1. Stir casting 12 2.4.2.2. Disintegration melt deposition (DMD) 13 2.4.3. Deposition techniques 14 2.4.3.1. Spray deposition. 14 2.4.3.2. Vapour deposition 15 2.5. Importance of SPS process 16 2.6 Strengthening mechanisms of composite materials…………………………………....16 2.6.1. Coefficient of thermal expansion (CTE) strengthening 16 2.6.2. Orowan strengthening 17 2.6.3. Hall-Petch strengthening 17 2.6.4. Effect of load trensfer 18 2.6.5. Precipitation strengthening 18 2.7. Effect of various reinforcement in magnesium alloys 19 2.7.1. Effect of Silicon Carbide (SiC)… 19 2.7.2. Effect of Aluminium Nitride (AlN) 19 2.7.3. Effect of Titanium diboride (TiB2) 19 2.7.4. Effect of Aluminium Oxide (Al2O3) and Molybdenum disulphide (MoS2) 19 2.8. Effect of ZnO in magnesium alloys 20 2.9. Importance of reinforcement of ZnO particles 22 2.10. Summary of the literature 23 3. MATERIALS AND EXPERIMENTAL PROCEDURE 24 3.1 Materials 24 3.2. Glove box 27 3.3. Flow chart of the process 29 3.4. Fabrication of MMC 29 3.5. Characterisation and mechanical testing 31 3.5.1. Particle size 31 3.5.2. Microstructure analysis (OM) 32 3.5.2.1. Polishing 33 3.5.2.2. Etching 33 3.5.3. X-ray Diffraction (XRD) 33 3.5.4. Field Emmision Scanning Electron Microscopy (FE-SEM) with EDS 34 3.5.5. Micro Hardness test 35 3.5.6. Compression test 36 4. RESULTS AND DISCUSSION 38 4.1. Microstructural analysis 38 4.2. XRD analysis 42 4.3. FE-SEM analysis 46 4.4. Density and Porosity 53 4.4.1. Archimedes method 53 4.5. Mechanical properties 54 4.5.1. Micro Hardness test 54 4.5.2. Compression test 55 4.5.3. Strengthening mechanism of the composites 57 5. CONCLUSION 62 REFERENCE 63

    1. Rawal SP, “Metal matrix composites for space application”, Jom, vol. 53, no. 14-17, 2001.
    2. Palucka T, Bensaude B, “Composites overview”, History of Recent Science and Technology-19, 2002.
    3. Miracle D, “Metal matrix composites- from science to technological significance”, Composites science and technology, vol. 65, no. 2526-2540, 2005.
    4. Kainer K.U, “Metal matrix composites: custom-made materials for automotive and aerospace engineering”, John Wiley & Sons, 2006.
    5. Guo F, “Understanding the microstructure and fatigue behavior of magnesium alloys”, University of Leicester, 2010.
    6. Gupta M and Ling S.N.M, “Magnesium, magnesium alloys, and magnesium composites”, John Wiley & Sons, 2011.
    7. Celotto S, “TEM study of continuous precipitation in Mg-9 wt%Al-1 wt%Zn alloy, Acta Materialia, vol. 48, no. 1775-1787, 2000.
    8. Fujisawa S, Yonezu A, “Estimation of microstructural plastic property of die-cast Mg alloy (AZ91D) evaluated temperature indentation”, Mater. Sci. and Eng. A, vol. 616, no. 63-70, 2014.
    9. Mordike B.L, Ebert T, “Magnesium properties- Applications- Potential”, Mater. Sci. Eng. A, vol. 302, no. 37-45, 2001.
    10. Polmear I.J, “Magnesium alloys and applications”, Mater. Sci. Technol., vol. 10, no. 1-16 (1994).
    11. Pollock T.M, “Weight loss with magnesium alloys”, Science, vol. 328, no. 986–987, 2010.
    12. Prasad, Rao KP, Gupta M, “Hot workability and deformation mechanisms in Mg/nano-Al2O3 composite”, Journal of Compos. Sci. Technol., vol. 69, no. 1070-1076, 2009.
    13. Garces G, Adeva P, “Microstructural and mechanical characterisation of WE54–SiC composites”, Journal of Mater. Sci. Eng. A, vol. 527, no. 6511-6517, 2010.
    14. Luo A, “Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites”, Journal of Metall. Mater. Trans. A, vol. 26, no. 2445-2455, 1995.
    15. Huseyin P, Abdullah S, “Effects of thermo mechanical densification and heat treatment on density and brinell harness of scots pine”, Reviewed articles, 2015.
    16. Ramanathan A, Pradeep Kumar K, Rajaraman M, “A review on the production of metal matrix composites through stir casting – Furnace design, properties, challenges, and research opportunities”, Journal of Manufacturing Processes, vol. 42, no. 213-245, 2019.
    17. Murugan S, Nguyen Q B and Gupta M, “Synthesis of Magnesium Based Nano-composites”, Magnesium, 2015.
    18. Gupta M, W Wong, “Magnesium based nano-composites, Lightweight materials of future”, Materials Characterization, 2015.
    19. Bolfarini C, Srivastava VC, “Metal spray and spray deposition”, Spray forming of novel materials, 2017.
    20. Kopeliovech D, “SubsTech Substance & Technologies”, Retrieved 2011.
    21. Zhand H, Zhao Y, “Microstructure evolution and mechanical properties of Mg matrix composites reinforced with Al and nano SiC particles using spark plasma sintering”, Journal of Alloys and Compounds, vol. 725, no. 652-664, 2017.
    22. Botelho P.A, Straffelini G, “Extrusion behaviuor of AZ91 Mg alloy produced by spark plasma sintering”, Matter Sci. Technol., vol. 15, no, 1959-1965, 2014.
    23. Minamino Y, Koizumi Y, “Microstructure and mechanical properties of bulk nanocrystalline Fe-Al-C alloys made by mechanically alloying with subsequent spark plasma sintering”, Sci. Technol. Mater, vol. 5, no. 133-139, 2004.
    24. Cabibbo M, Fabrizi A, “A microstructure study of nanostructured Fe-Mo+1.5 wt.% SiO2 and 1.5 wt.% TiO2 powder compacted by spark plasma sintering”, Mater. Sci. Eng., vol. 496, no. 121-132, 2008.
    25. Xiang S, wang X, Gupta M, “Graphene nanoplates induced heterogeneous bimodal structure magnesium matrix composites with enhanced mechanical properties”, Scientific report, 2016.
    26. Pang X, Xian Y, Wang W, Zhang P, “Tensile properties and strengthening effect of 6061Al/12wt%B4C composites reinforced with nano-Al2O3 particles”, Journal of Alloys and Compounds, 2018.
    27. Qiao X, Ying T, Zheng M, Wei E, Wu K, Hu X, “Microstructure evolution and mechanical properties of nano-SiC/AZ91 composites by extrusion and equal channel angular pressing”, Materials Characterization, 2016.
    28. Casati R, Vedani M, “Metal matric composites reinforced by nano-particles”, A review metals, 2014.
    29. Sanaty A , Material Science and Engineering, “Comparison between current models for strength of particulate reinforced metal matrix composites with emphasis on consideration on Hall-Petch effect”, 2012.
    30. Nardone V, Prewo K, “On the strength of discontinuous silicon carbide reinforced aluminium composites”, Scripta Metallurgies, 1986.
    31. Muga C, Zhang Z, Advance in Material Science and Engineering, “ Strengthening mechanisms of magnesium-lithium based alloys and composites”, 2016.
    32. Bellam and Sandeep P, “Synthesis and mechanical characterization of magnesium reinforced with SiC composites”, Materials today: Proceeding, 2019.
    33. Chen J and Chonggao B, “Evolutions of microstruture and mechanical properties for Mg-Al/AlN composites under hot extrusion”, Materials Science & Engineering A, 2016.
    34. Peng X and Yimin G, “An investigation on grain refinement mechanism of TiB2 particulate reinforced AZ91 composites and its effect on mechanical properties”, Journal of Alloys and Compounds, vol. 780, no. 237-244, 2018.
    35. Thomas V, Sekvakumar, “Mechanical proeprties of magnseium gybrid composite reinforced with Al2O3 and MoS2 particles through PM route”, Materials today proceedings, 2018.
    36. Subrata S, Comondore R, “Grain refinement of AZ91E and Mg-9 wt% Al binary alloys using zinc oxide”, Americal Foundary Society, vol. 9, Issue 1, 2015.
    37. Kusharjanto, Syoni D, Akhmad A K, “Effect of ZnO nanoparticles to mechanical properties of thixoformed Mg-Al-Zn alloy”, Materials Research Express, 2018.
    38. Gupta M, Sankaranarayan S, Pranav Nayak U, “Nano-ZnO particle addition to monolithic magnesium for enhanced tensile and compressive response”, Journal of Alloys and Compounds, vol. 615, no. 211-219, 2014.
    39. Xuan L, Zhiqiang Z, Qichi Le, Lei, Bao, “The effect of ZnO particles on the grain refinement and mechanical properties of AZ31 Magnesium alloys”, Trans Indian Inst Met., vol. 69, no. 1911-1918, 2016.
    40. Subrata S, Comondore R, “Grain refinement of AZ91E and Mg-9 wt% Al binary alloys using zinc oxide”, Americal Foundary Society, vol. 9, Issue 4, 2015.
    41. Mondet M, Barraud E, Lemonnier S, Guyon J, Allain N, Grosdidier T, “Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering”, Acta Materialia, vol. 119, no. 55-67, 2016.
    42. Mathieu M , Elodie B, Sebastien L, “Optimisation of the mechanical properties of a Spark Plasma Sintered (SPS) magnesium alloy through a post-sintering in-situ precipitation treatment”, Journal of Alloys and Compounds vol. 698, no. 259-266, 2017.
    43. Addisu N, “Structural Intergrity assessment of SiC/AZ61 Magnesium alloy metal matrix composites processed by heat treatment and severe plastic deformation”, Doctoral thesis, April 8, 2019.
    44. Murugan S, “Experimental and numerical analysis of mechanical and fatigue behavior of magnesium alloy AZ61 with micro-SiC particles”, Master thesis, 2018.
    45. Arsha kusumam T.V, Thasleena P, Divya T, Nikhila M.P, Anju M, Anas K, Renuka, “Morphology controlled synthesis and photocatalytic activity of zinc oxide nanostructure”, Ceram. Int. vol. 42, no. 3769-3775, 2016.
    46. Callister W.D, Rethwisch D.G, “Materials Science and Engineering: An Introduction”, John Wiley & Sons, Inc, 2007.
    47. Dieter G.E, “Mechanical Metallurgy”, 1976.
    48. Cicco M, Konishi H, Cao G, Choi H.S, Turng L.S, Perepezko J.H, Kou L, Lakes R, Li X, “Strong, ductile magnesium-zinc nanocomposites”, Metall. Mater. Trans. A, vol. 40, no. 3038–3045, 2009.
    49. Zhang Z, Chen D, “Contribution of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites”, Mater. Sci. Eng.: A, vol. 483, no. 148– 152, 2008.
    50. Zhang Z, Chen D, “Consideration of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites: a model for predicting their yield strength”, Scripta Mater., vol. 54, no. 1321–1326, 2006.
    51. Sanaty-Zadeh A, “Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect”, Mater. Sci. Eng. A, vol. 531, no. 112–118, 2012.
    52. Ramakrishnan N, “A analytical study on strengthening of particulate reinforced metal matrix composites”, Acta Mater., vol. 44, no. 69–77, 1996.
    53. Wong W, Gupta M, “Development of Mg/Cu nanocomposites using microwave assisted rapid sintering”, Compos. Sci. Technol., vol. 67, no. 1541-1552, 2007.
    54. Goh C, Wei J, Lee L.C, Gupta M, “Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique”, Nanotechnology 17, 2006.
    55. Stanley, “Study on Mechanical Properties of High Entropy Alloy particles reinforced magnesium-based composites prepared by spark plasma sintering, Master Thesis, 2020.

    無法下載圖示 全文公開日期 2025/12/04 (校內網路)
    全文公開日期 2025/12/04 (校外網路)
    全文公開日期 2025/12/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE