簡易檢索 / 詳目顯示

研究生: 白宗霖
Tsung-Lin Pai
論文名稱: 同時添加不同奈米顆粒對於ZK60鎂基複合材料機械性質之影響
Effect of different nano-particles on the mechanical properties of ZK60 magnesium-based metal matrix composite
指導教授: 丘群
Chun Chiu
口試委員: 雷添壽
陳士勛
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: ZK60Y2O3SiC鎂基複合材料混合添加機械性質
外文關鍵詞: ZK60, Y2O3, SiC, Magnesium-based metal matrix composite, Hybrid addition, Mechanical properties
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以ZK60合金作為基材,添加奈米粒徑之氧化釔(Y2O3)與碳化矽(SiC)顆粒,以攪拌鑄造法製成鎂基複合材料,並固定添加3 wt.%陶瓷粉末分別製成單一添加與混合添加陶瓷顆粒之複合材料,並對成分、顯微結構、機械性質進行分析,探討同時添加不同陶瓷顆粒對ZK60合金之影響。
    研究結果顯示,添加Y2O3及SiC之鎂基複合材料,其相組成為α-Mg、MgZn2、Zn2Zr、SiC、Y2O3。從顯微結構發現,添加Y2O3與SiC可造成晶粒細化之效果,鎂基複合材料之晶粒尺寸從194 μm下降至101 μm。但添加的陶瓷顆粒會傾向出現在晶界上,並有團聚之狀況發生,製成之ZK60複合材料,其孔隙率提高、硬度及拉伸性質無明顯上升甚至下降,雖然鎂基複合材料被晶粒細化,但因為陶瓷顆粒無均勻散佈於基材中,且內部含有孔隙,使部分性質不增反減。


    In this study, Magnesium-based metal matrix composites containing ZK60 alloy as the matrix, and nanometric yttrium oxide (Y2O3) and silicon carbide (SiC) powder as reinforcements have been synthesized by stirring casting method. The reinforcement is 3 wt% of single or hybrid addition of ceramic particles. Analysis of composition, microstructure, and mechanical properties was performed to study the effect of different ceramic particles on properties of ZK60 alloy.
    The results show that the phase content of magnesium-based composites was α-Mg, MgZn2, Zn2Zr, SiC, and Y2O3. From the microstructural analysis, it was found that the addition of Y2O3 and SiC resulted in grain size refinement. The grain size of the composite decreases from 194 μm to 101 μm. Ceramic particles tend to agglomerate on the grain boundary. The increase of porosity of the composites result in decrease of the hardness and tensile strength. Although the grain in the magnesium-based metal matrix composites have been refined, the ceramic particles were not uniformly dispersed in the matrix and the existence of pores resulted in degradation of strength.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 序論 1 第二章 文獻回顧 2 2.1鎂及鎂合金之介紹 2 2.1.1鎂 2 2.1.2 鎂合金 2 2.1.3合金元素於鎂合金的影響 3 2.1.4鎂合金之符號標示 5 2.2鎂合金強化方式與強化機制 6 2.2.1鎂合金強化方式 6 2.2.2鎂合金強化機制 8 2.3鎂基複合材料製程方式 12 2.4鎂基複合材料文獻回顧 13 2.5研究動機 15 第三章 實驗方法 16 3.1實驗流程 16 3.2實驗材料 18 3.3熔煉設備與步驟 21 3.3.1鑄造熔煉爐 21 3.3.2鎂基複合材料製備步驟 22 3.4試片製備 23 3.5分析儀器 25 3.5.1光學顯微鏡 25 3.5.2電子顯微鏡 26 3.5.3 X光繞射分析 27 3.6密度量測與孔隙率計算 29 3.7機械性質測試 30 3.7.1洛式硬度機 30 3.7.2動態材料試驗機 31 3.7.3拉伸試片 33 第四章 結果與討論 34 4.1顯微組織與成分分析 34 4.1.1 ZK60合金原材分析 34 4.1.2 ZK60鎂基複合材料分析 39 4.2 ZK60合金與複合材料中之孔隙率計算 52 4.3機械性質測試 54 4.3.1硬度試驗 54 4.3.2拉伸試驗 55 4.4拉伸試片破斷面顯微觀察 57 4.5實驗結果討論 61 第五章 結論 64 參考文獻 65

    [1] E. Ahgion, B. Bronfin, D. Eliezer, “The role of the magnesium industry in protecting the environment”, Journal of Materials Processing Technology, Vol. 117, pp. 381-385, 2001.
    [2] B. L.Mordike, T. Ebert, “Magnesium: properties applications potential”, Material Science and Engineering: A, Vol. 302, Issue. 1, pp. 37-45, 2001.
    [3] Michael M Avedesian, Hugh Baker, “ASM speciality handbook-magnesium and magnesium alloys”, Ohio : ASM International, 1999. 22
    [4] K. U. Kainer, F. von Buch, “The current state of technology and potential for further development of magnesium applications”, Magnesium Alloys and Technology, Weinheim: WILEY-VCH Verlag GmbH & Co. KG aA, 2003.
    [5] A. Luo, M. O. Pekguleryuz, “Cast magnesium alloys for elevated temperature applications”, Journal of Materials Science 29, pp. 5259-5271, 1994.
    [6] ASTM International, “Standard practice for temper designations of magnesium alloys, cast and wrought”, ASTM Standard B275-05.
    [7] A. Yamashita, Z. Horita, T. G. Langdon, “Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation”, Materials Science and Engineering: A, pp. 142-147 , 2001.
    [8] C. Moosbrugger, “Engineering properties of magnesium alloys”, ASM International, 2017.
    [9] J. Gao, J. Fu, N. Zhang, Y. Chen, “Structural features and mechanical properties of Mg-Y-Zn-Sn alloys with varied LPSO phases”, Journal of Alloys and Compounds, Vol. 768, pp. 1029-1038, 2018.
    [10] R. Casati, M. Vedani, “Metal Matrix Composites Reinforced by Nano-Particles—A Review”, Metals, Vol. 4, pp. 65-83, 2014.
    [11] H. Somekawa, Y. Osawa, T. Mukai, “Effect of solid-solution strengthening on fracture toughness in extruded Mg-Zn Alloys”, Scripta Materialia, Vol. 55, Issue. 7, pp. 593-596, 2006.
    [12] L. Gao, R.S. Chen, E.H. Han, “Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys”, Journal of Alloys and Compounds, Vol. 481, Issue. 1-2, pp. 379-384, 2009.
    [13] T. Bhattacharjee, C.L. Mendis, T.T. Sasaki, T. Ohkubo, K. Hono, “Effect of Zr addition on the precipitation in Mg–Zn-based alloy”, Scripta Materialia, Vol. 67, Issue. 12, pp. 967-970, 2012.
    [14] Z. Zhang, D.L. Chen, “Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength”, Scripta Materialia, Vol. 54, Issue. 7, pp. 1321-1326, 2006.
    [15] H. Yu, Y. Xin, M. Wang, Q. Liu, “Hall-Petch relationship in Mg alloys: A review”, Journal of Materials Science & Technology, Vol. 34, Issue. 2, pp. 248-256, 2018.
    [16] N. Hansen, “Hall–Petch relation and boundary strengthening”, Scripta Materialia, Vol. 51, Issue. 8, pp. 801-806, 2004.
    [17] R.J. Arsenault, N. Shi, “Dislocation generation due to differences between the coefficients of thermal expansion”, Materials Science and Engineering, Vol. 81, pp. 175-187, 1986.
    [18] K. Deng, J. Shi, C. Wang, X.Wang, Y. Wu, K. Nie, K. Wu, “Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite”, Composites Part A: Applied Science and Manufacturing, Vol. 43, Issue. 8, pp. 1280-1284, 2012.
    [19] Q. Li, C.A. Rottmair, R.F. Singer, “CNT reinforced light metal composites produced by melt stirring and by high pressure die casting”, Composites Science and Technology, Vol. 70, Issue. 16, pp. 2242-2247, 2010.
    [20] W. Zhou, Z.M. Xu, “Casting of SiC reinforced metal matrix composites”, Journal of Materials Processing Technology, Vol. 63, pp. 358-363, 1997.
    [21] H.Z. Ye, X.Y. Liu, “Review of recent studies in magnesium matrix composites”, Journal of Materials Science, Vol. 39, pp. 6153-6171, 2004.
    [22] H.R. Ezatpour, S.A. Sajjadi, M.H. Sabzevar, Y. Huang, “Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting”, Materials & Design, Vol. 55, pp. 921-928, 2014.
    [23] D.S. Prasad, C. Shoba, N. Ramanaiah, “Investigations on mechanical properties of aluminum hybrid composites”, Journal of Materials Research and Technology, Vol. 3, pp. 79-85, 2014.
    [24] ASTM International, “ASTM E8/E8M-09 Standard test methods for tension testing of metallic materials”, 2011.
    [25] C.S. Goh, J. Wei, L.C. Lee, M. Gupta, “Properties and deformation behaviour of Mg–Y2O3 nanocomposites”, Acta Materialia, Vol. 55, Issue 15, pp. 5115-5121,2007.
    [26] K.K. Deng, K. Wu, Y.W. Wu, K.B. Nie, M.Y. Zheng, ” Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites”, Journal of Alloys and Compounds, Vol. 504, Issue. 2, pp. 542-547, 2010.
    [27] X. Zhou, D. Su, C. Wu, L. Liu, “Tensile Mechanical Properties and Strengthening Mechanism of Hybrid Carbon Nanotube and Silicon Carbide Nanoparticle-Reinforced Magnesium Alloy Composites”, Journal of Nanomaterials, 2012.
    [28] M. Gu, Z. Wu, Y. Jin, M. Koçak, “Effects of reinforcements on the aging response of a ZK60-based hybrid composite”, Materials Science and Engineering:A, Vol. 272, Issue. 2, pp. 257-263, 1999.
    [29] D. R. Asklend, P. Phulé, “The Science and Engineering of Materials 4th Edition”, 2005.
    [30] 鄭信民、林麗娟,「X光繞射應用簡介」,工業材料雜誌181期,民國91年。
    [31] S.M.H. Karparvarfard, S.K. Shaha, S.B. Behravesh, H. Jahed, B.W. Williams, “Microstructure, texture and mechanical behavior characterization of hot forged cast ZK60 magnesium alloy”, Journal of Materials Science & Technology, Vol. 33, Issue. 9, pp. 907-918, 2017.
    [32] X. Chen, X. Huang, F. Pan, A. Tang, J. Wang, D. Zhang, “Effects of heat treatment on microstructure and mechanical properties of ZK60 Mg alloy”, Transactions of Nonferrous Metal Society of China, Vol. 21, Issue. 4, pp. 754-760, 2011.
    [33] G. Garces, M. Rodriguez, P. Perez, P. Adeva, “Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg–Y2O3 composites”, Materials Science and Engineering: A, Vol. 419, Issue. 1-2, pp. 357-364, 2006.
    [34] R. Gunther, Ch. Hartig, R. Bormann, “Grain refinement of AZ31 by (SiC)P: Theoretical calculation and experiment”, Acta Materialia, Vol. 54, Issue. 20, pp. 5591-5597, 2006.
    [35] K.B. Nie, X.J. Wang, X.S. Hu, L. Xu, K. Wu, M.Y. Zheng, “Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration”, Materials Science and Engineering: A, Vol. 528, Issue. 15, pp. 5278-5282, 2011.
    [36] K. Ponappa, S. Aravindan, P. Venkateswara Rao, “Influence of Y2O3 particles on mechanical properties of magnesium and magnesium alloy (AZ91D)”, Journal of Composite Materials, Vol. 47, pp. 1231-1239, 2012.
    [37] M. Manoharan, S.C.V. Lim, M. Gupta, “Application of a model for the work hardening behavior to Mg/SiC composites synthesized using a fluxless casting process”, Materials Science and Engineering: A, Vol. 333, Issue. 1-2, pp. 243-249, 2002.
    [38] H. Dieringa, “Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review”, Journal of Materials Science, Vol. 46, pp. 289-306, 2011.
    [39] J. Lan, Y. Yang, X. Li, “Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method”, Materials Science and Engineering: A, Vol. 386, Issue. 1-2, pp. 284-290, 2004.
    [40] S.F. Hassan, M. Gupta, “Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing”, Journal of Alloys and Compounds, Vol. 429, Issue. 1-2, pp. 176-183, 2007.
    [41] K. S. Tun, M. Gupta, T. S. Srivatsan, “Investigating influence of hybrid (yttria + copper) nanoparticulate reinforcements on microstructural development and tensile response of magnesium”, Materials Science and Technology, Vol. 26, Issue. 1, pp. 87-94, 2013.
    [42] K.B. Nie, X.j. Wang, K. Wu, X.S. Hu, M.Y. Zheng, L. Xu, “Microstructure and tensile properties of micro-SiC particles reinforced magnesium matrix composites produced by semisolid stirring assisted ultrasonic vibration”, Materials Science and Engineering: A, Vol. 528, Issue. 29-30, pp. 8709-8714, 2011.
    [43] 莊東漢,「材料破損分析」,五南出版社,2007。
    [44] S.K. Shaha, F. Czerwinski, W. Kasprzak, D.L. Chen, “Tensile and compressive deformation behavior of the Al–Si–Cu–Mg cast alloy with additions of Zr, V and Ti”, Materials & Design, Vol. 59, pp. 352-358, 2014.
    [45] S.K. Thakur, K. Balasubramanian, M. Gupta, “Microwave synthesis and characterization of magnesium based composites containing nanosized SiC and hybrid (SiC +Al2O3) reinforcements”, Journal of Engineering Materials and Technology, Vol. 129, pp. 194-199, 2007.
    [46] S.C. Tjong, “Novel Nanoparticle‐Reinforced Metal Matrix Composites with Enhanced Mechanical Properties”, Advanced Engineering Materials, 2007.
    [47] Q. Li, F. Qiu, B.X. Dong, R. Geng, M.M. Lv, Q.L. Zhao, Q.C. Jiang, “Fabrication, microstructure refinement and strengthening mechanisms of nanosized SiCP/Al composites assisted ultrasonic vibration”, Materials Science & Engineering: A, Vol. 735, pp. 310-317, 2018.
    [48] C.H. Caceres, A. Blake, “The strength of concentrated Mg–Zn solid solutions”, Physica Status Solidi 194, pp. 147-158, 2002.
    [49] C.H. Caceres, G. E. Mann, J. R. Griffiths, “Grain size hardening in Mg and Mg-Zn solid solutions”, Metallurgical and Materials Transactions A, Vol. 42, pp. 1950-1959, 2011.
    [50] S.K. Thakur, B.K. Dhindaw, N. Hort, K.U. Kainer, “Some studies on the thermal-expansion behavior of c-fiber, SiCP , and in-situ Mg2Si-reinforced AZ31 Mg alloy-based hybrid composites”, Metallurgical and Materials Transactions A, Vol. 35A, pp. 1167-1176, 2004.
    [51] X. Li, G. Ma, P. Jin, L. Zhao, J. Wang, S. Li, “Microstructure and mechanical properties of the ultra-fine grained ZK60 reinforced with low content of nano-diamond by powder metallurgy”, Journal of Alloys and Compounds, Vol. 778, pp. 309-317, 2019.
    [52] S.M. He, L.M. Peng, X.Q. Zeng, W.J. Ding, Y.P. Zhu, “Comparison of the microstructure and mechanical properties of a ZK60 alloy with and without 1.3 wt.% gadolinium addition”, Materials Science & Engineering: A, Vol. 433, pp. 175-181, 2006.
    [53] B. Dybowski, T. Rzychon, B. Chmiela, A. Gryc, “Properties of WE43 metal matrix composites reinforced with SiC particles”, Properties and Characterization of Modern Materials, Advanced Structure Materials, Vol. 33, pp. 197-214, 2017.
    [54] F. Khodabakhshi, M. Haghshenas, H. Eskandari, B. Koohbor, “Hardness−strength relationships in fine and ultra-fine grained metals processed through constrained groove pressing”, Materials Science & Engineering: A, Vol. 636, pp. 331-339, 2015.

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 2025/08/24 (校外網路)
    全文公開日期 2025/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE