簡易檢索 / 詳目顯示

研究生: 董芳綺
Fang-Qi Dong
論文名稱: 混料式螺桿射出成形對聚乳酸與生物玻璃複合材料之機械性質與生物相容性分析
Analysis on Mechanical Properties and Biocompatibility of Polylactide/Bioglass Composites by Mixing-Screw Injection Molding Process
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 周育任
Yu-Jen Chou
沈永康
Yung-Kang Shen
陳栢均
Po-Chun Chen
莊程媐
Cheng-Hsi Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 190
中文關鍵詞: 混料式射出成形螺桿聚乳酸生物玻璃微型拉伸試片生物相容性
外文關鍵詞: Mixing screw, Polylactide, 58S Bioglass, Miniature tensile specimens, Biocompatibility
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討混料式射出螺桿對聚乳酸 (Polylactide, PLA)添加58S生物玻璃 (58S Bioglass, 58S BG)複合材料於微型拉伸試片之機械性質影響,並進行生物相容性測試。使用混料式螺桿直接射出成形(M-PLA/BG) 改善先前研究之雙螺桿混煉造粒後射出成形 (TV-PLA/BG)因高溫導致的熱降解作用。以實驗設計 (DoE)搭配單流向 (Ref)與雙流向 (WL)的微型拉伸試片,探討複合材料的顆粒分佈情形與機械強度差異,進行生物體外試驗評估應用於骨科醫材的可行性。實驗結果顯示,低熔融溫度 (Tmelt)因材料熱降解較少獲得較高的楊氏模數。添加10wt% BG的單流向試片有最佳楊氏模數為17,363 MPa,雙流向試片因縫合線處強度衰弱且顆粒容易應力集中,楊氏模數下降至15,892 MPa。雖然TV-PLA/10BG試片的平均顆粒間距(Inter-particle distance)為0.0526 mm,相較於本研究之M-PLA/10BG試片(0.1222 mm),更接近於顆粒間距理想值(0.0506 mm);然而TGA結果指出,M-PLA/10BG的熱裂解溫度提升約13~23℃,顯示其更好的熱穩定性,且楊氏模數由14,005 MPa提升至17,363 MPa。生物體外試驗方面,使用最佳射出成形參數(R7) 製作M-PLA/10BG迷你骨螺釘與骨板,浸泡於模擬人體體液(SBF)一周後,表面羥基磷灰石沉積物覆蓋率達91.35%。另外,生物相容性試驗結果顯示,迷你骨螺釘與骨板的細胞存活率分別是75.64%與80.12%,有助於成骨細胞增殖,本研究成果未來可更進一步探討生物醫療之應用。


    This study investigates the effect to mechanical properties of miniature tensile specimens which consist of polylactide (PLA) with 58S bioglass (58S BG) composites under mixing screw injection molding. Furthermore, this study compares to our previous research results, i.e., the particle distribution, mechanical properties, and with/without weld line design of twin-screw (TV-PLA/10BG) and mixing-screw (M-PLA/10BG) miniature tensile specimens by Design of experiments (DoE) method. In vitro bioactivity and biocompatibility tests have been performed to assess the feasibility for potential orthopedic materials application. Results have shown that the significant factor is the melting temperature (Tmelt) for reducing degradation of PLA composites by injection molding. Higher Young's modulus of no-weld line specimens can be obtained in lower melting temperature factor, which is 17,363 MPa by adding 10 wt% bioglass. On the other hand, weld line specimens only reaches to 15,892 MPa of Young's modulus due to the weld line weakening the strength of specimens. The average inter-particle distance of M-PLA/10BG sample is 0.1222 mm, and the TV-PLA/10BG sample has better uniformity as 0.0526 mm. However, the M-PLA/10BG sample has better thermal stability, in which decomposition temperature increases by 13~23 °C, Young's modulus increases from 14,005 MPa to 17,363 MPa. For in vitro test, after immersing the M-PLA/10BG (R7) samples in simulated body fluid (SBF) for one week, the coverage of apatite deposition reaches to 91.35%, and the cell survival rate of bone screw is 75.64% and bone plate is 80.12%, which show positive results to osteoblasts proliferation. Results of this study can be expected to further development and applications of biomedical devices.

    摘要 I ABSRACT II 誌謝 III 目錄 V 圖目錄 X 表目錄 XVII 符號表 XX 第一章 導論 1 1.1 研究背景 1 1.2 研究目的 4 1.3 研究方法 5 第二章 文獻回顧 8 2.1射出成形混料式螺桿相關文獻 8 2.2生物複合材料相關文獻 12 2.2.1 顆粒增強複合材料 (Particulate-reinforced composites, PRCs) 12 2.2.2 聚乳酸複合材料相關文獻 15 2.2.3 聚乳酸與生物玻璃複合材料相關文獻 23 2.3 生物活性玻璃(BG)介紹與製程相關文獻 27 2.3.1 生物活性玻璃介紹 27 2.3.2 生物活性玻璃合成製程相關文獻 28 2.3.3 生物活性機制 33 2.3.4 生物活性相容性 35 2.4 文獻回顧總結 36 第三章 混料式螺桿介紹與熱性質分析 37 3.1射出成形混料式螺桿介紹 37 3.2 實驗材料 42 3.2.1 聚乳酸 (Polylactic Acid, PLA) 42 3.2.2 58S生物玻璃 (58S Bioglass, 58S BG) 43 3.3 PLA/BG複材之熱性質量測樣品製備 46 3.4 材料性質分析量測儀器 47 3.4.1 熱重損失分析儀 (Thermogravimetric Analysis, TGA) 47 3.4.2 熱示差分析儀 (Differential Scanning Calorimetry, DSC) 48 3.5 熱性質分析結果 49 第四章 模具結構與射出成形製程 53 4.1射出成形設備 53 4.2微型拉伸試片模具結構與模仁設計 54 4.3 單流向 (Ref)微型拉伸試片 56 4.3.1 單流向 (Ref)試片之射出成形製程實驗規劃 56 4.3.2 單流向 (Ref)試片之模流分析 57 4.3.3 單流向 (Ref)試片之短射實驗 63 4.3.4 PLA於單流向 (Ref)試片之拉伸試驗 65 4.3.5 PLA於單流向 (Ref)試片之重量量測結果 68 4.4 雙流向 (WL)微型拉伸試片 71 4.4.1 雙流向 (WL)試片之射出成形製程實驗規劃 71 4.4.2 雙流向 (WL)試片之模流分析 72 4.4.3 雙流向 (WL)試片之短射實驗 74 4.4.4 PLA於雙流向 (WL)試片之拉伸試驗 76 4.4.5 PLA於雙流向 (WL)試片之重量量測結果 79 第五章 PLA/BG複合材料之機械性質分析 82 5.1 PLA/BG複合材料之拉伸試驗結果 82 5.1.1 PLA/BG複合材料於單流向(Ref)試片 82 5.1.2 PLA/BG複合材料於雙流向(WL)試片 84 5.2 試片斷面表徵 86 5.2.1 材料斷面表徵之量測設備 86 5.2.2 拉伸斷面量測結果 87 5.3 複合材料顆粒分佈 99 5.3.1 顆粒複材之量測設備 99 5.3.2 微型拉伸試片之顆粒分佈量測結果 100 5.4 迷你骨螺釘/骨板模具 105 5.4.1 迷你骨螺釘/骨板之射出成形製程實驗規劃 107 5.4.2 迷你骨螺釘/骨板之模流分析 108 5.4.3 迷你骨螺釘/骨板之短射實驗 110 5.4.4 迷你骨螺釘/骨板於PLA/BG複材的顆粒分佈 112 第六章 生物體外試驗 114 6.1 生物活性試驗 (Bioactivity testing) 114 6.1.1 生物活性試驗流程 115 6.1.2 生物活性試驗結果 118 6.2 生物相容性試驗 (Biocompatibility testing) 129 6.2.1 生物相容性試驗流程 130 6.2.2 生物相容性試驗結果 131 6.3 綜合討論 134 第七章 結論與建議 137 7.1 結論 137 7.2 建議 139 參考文獻 141 附錄A PLA 3001D物性表 147 附錄B MOLDEX3D 材料庫之材料特性表 148 附錄C 材料熱性質分析 149 附錄D 射出機FANUC ROBOSHOT Α-15IA 151 附錄E 混料式螺桿設計圖 152 附錄F 微型拉伸試片產品圖 153 附錄G 微型拉伸試片模具設計圖 154 附錄H 迷你骨螺釘/骨板產品圖 156 附錄I 迷你骨螺釘/骨板模具設計圖 157 附錄J 拉伸強度理論 159 附錄K 變異數分析與迴歸分析 164

    [1] Q. Chen, et al., "Metallic implant biomaterials", Mater. Sci. Eng. R Rep., 2015. 87: 1-57
    [2] J. Russias, et al., "Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation", Mater. Sci. Eng. C, 2006. 26: 1289-1295
    [3] A. R. Santos Jr, "Bioresorbable polymers for tissue engineering", Tissue Engineering, 2010.
    [4] A. El-Ghannam, et al., "Bioactive Ceramics", Comprehensive Biomaterials, 2011. 1: 157-179
    [5] L. L. Hench, "(ii) The challenge of orthopaedic materials", Current Orthopaedics, 2000. 14: 7-15
    [6] S. Joughehdoust, et al., "Synthesis and In Vitro Investigation of Sol-Gel Derived Bioglass-58S Nanopowders", Materials Science-Poland, 2012. 30(1): 45-52
    [7] M. Alksne, et al., "In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration", J MECH BEHAV BIOMED Mater 104, 2020.
    [8] J. A. Roether, et al., "Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering", j mater sci Mater Med 13, 2002. 1207-1214
    [9] M. Hafezi, et al., "Polyurethane/58S bioglass nanofibers: Synthesis, characterization, and in vitro evaluation", RSC Adv., 2016.
    [10] P. Palmero, "Ceramic–polymer nanocomposites for bone-tissue regeneration", Nanocomposites for Musculoskeletal Tissue Regeneration, 2016. 331-367
    [11] Z. Fereshteh, et al., "Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application", Data in Brief, 2015. 4: 524-528
    [12] W. Lu, et al., "Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells", Cell Tissue Res, 2014. 356: 97-107
    [13] S. -A. Oh, et al., "Composite membranes of poly(lactic acid) with zinc-added bioactive glass as a guiding matrix for osteogenic differentiation of bone marrow mesenchymal stem cells", J. Biomater. Appl, 2011. 27(4): 413-422
    [14] G. Vergnol, et al., "In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices", J Biomed Mater Res Part B, 2016. 180-191
    [15] B. A. Tilocca, "Structural models of bioactive glasses from molecular dynamics simulations", Proc. R. Soc. A, 2009. 465: 1003-1027
    [16] L. M. Mathieu, et al., "Processing of homogeneous ceramic/polymer blends for bioresorbable composites", Compos Sci Technol, 2006. 66: 1606-1614
    [17] T. Kokubo, et al., "How useful is SBF in predicting in vivo bone bioactivity?", Biomaterials, 2006. 27: 2907-2915
    [18] T. Kokubo, "Bioactive glass ceramics: properties and applications", Biomaterials, 1991. 12
    [19] V. Khattar, "Designed to dissolve: Bioresorbable medical devices", Biomaterials, 2019.
    [20] F. Matthieu, et al.,"Morphology and mechanical properties of micro injection molded polyoxymethylene tensile rods", Polymer Testing, 2019, 80: 106078.
    [21] 戴辰軒, "聚乳酸與生物玻璃微球之生物相容性複合材料於射出成形之機械性質與醫療應用", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2020
    [22] 黃志鴻, "混料式射出成形螺桿對聚乳酸添加有機蒙脫土複合材料機械性質影響之研究", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2017
    [23] 譚裎諺,"利用噴霧乾燥法合成58S生物玻璃微球及其性質鑑定之研究",碩士論文, 材料與科學工程研究所, 國立台灣科技大學, 台北市, 2019
    [24] 張榮語,"射出成型模具設計",高立圖書有限公司 1998。
    [25] M. Ruberg, et al, "Experimental Study on the Energy Efficiency of Different Screw Designs for Injection Molding", SPC ANTEC Conference Proceedings, 2008.
    [26] I. Akira, et al, "Effect of screw design on fiber breakage and dispersion in injection-molded long glass-fiber-reinforced polypropylene", Journal of Composite Materials 49.1, pp.75-84, 2015.
    [27] S. Y. Park, et al, "Transport Behavior of PP in a Plastication Screw of an Injection Molding Machine: Comparison of Standard Screw and Barrier Screw", POLYMER-KOREA 40.3, pp.414-420, 2016.
    [28] S. Ramakrishna, et al., "Reference Module in Materials Science and Materials Engineering", Elsevier, 2016.
    [29] W. F. Hosford, "Mechanical Behavior of Materials (2nd edition)", University of Michigan, Ann Arbor, 2009. 363-384
    [30] W. Wagner, et al., "Biomaterials Science (Fourth Edition)", An Introduction to Materials in Medicine, 2020. 415-429
    [31] 郭家興, "生物可降解複合材料之分子配向性對機械強度之影響研究", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2012
    [32] 李禧俊, "聚乳酸添加奈米蒙脫土複合材料之射出成形對機械性質影響", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2014
    [33] 葉惠珠, "射出成形抗水解聚乳酸複合材料之製備與特性分析", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2017
    [34] 廖啟宏, "聚乳酸添加蠶砂複合材料於射出成形之機械性質與生物分解之研究, 機械工程研究所, 國立台灣科技大學, 台北市, 2017
    [35] 李嘉誠, "紙漿複合材料之射出模造成形與機械性質分析研究", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2018
    [36] 陳彥均, "聚乳酸白蠟複材之性能改善與射出成形降解特性研究", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2019
    [37] J. J. Blaker, et al., "Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering", Acta Biomaterialia, 2005. 1: 643-652
    [38] A. Z. Kharazi, et al., "Nonmetallic textile composite bone plate with desired mechanical properties", J Compos Mater, 2012. 46(21): 2753-2761
    [39] G. Vergnol, et al., "In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices", J Biomed Mater Res B Appl Biomater, 2016. 104(1): 180-191
    [40] D. Canales, et al., "Effect of bioglass nanoparticles on the properties and bioactivity of poly(lactic acid) films", J Biomed Mater Res A, 2019. 108(10)
    [41] V. -V. Välimäki, , et al., "Molecular basis for action of bioactive glasses as bone graft substitute", Scand J Surg, 2006. 95(2): 95-102
    [42] L. L. Hench, "The story of Bioglass", Mater Sci: Mater Med, 2006. 17: 967-978
    [43] R. Li, et al., "An Investigation of Bioactive Glass Powders by Sol-Gel Processing", J. Appl. Biomed, 1991. 2: 231-239
    [44] S. -J. Shih, et al., " One-step synthesis and characterization of nanosized bioactive glass ", Journal of Medical and Biological Engineering s, 2014. 34.1: 18-23.
    [45] Y. -J. Chou, et al., "Preparation and in Vitro Bioactivity of Micron-sized Bioactive Glass Particles Using Spray Drying Method", Applied Sciences, 2018. 9(1): 19
    [46] A. R. El-Ghannam, "Advanced bioceramic composite for bone tissue engineering: Design principles and structure–bioactivity relationship", J Biomed Mater Res A, 2004. 69(3): 490-501
    [47] M. R. Filgueiras, et al., "Solution effects on the surface reactions of a bioactive glass", J Biomed Mater Res, 1993. 27: 445-453
    [48] ISO 10993-5. Biological evaluation of medical devices. Part 5: Tests for cytotoxicity: in vitro methods, The Organization Geneva, (2001).
    [49] S. Kamiloglu, et al. "Guidelines for cell viability assays." Food Frontiers 1.3 (2020): 332-349.
    [50] L. L. Hench, et al., " The sol-gel process", Chemical reviews, 1990. 90(1): 33-72.
    [51] R. E. Drumright, et al., "Polylactic Acid Technology", Adv. Mater, 2000. 12
    [52] M. Sakaguchi, et al., "Effects of initial crystallinity and molecular orientation on hydrolysis and mechanical properties of self-reinforced poly(lactic acid) screws", JSME, 2016. 3
    [53] C. L. Simoes, et al., "Mechanical Properties of Poly(e-caprolactone) and Poly(lactic acid) Blends", Wiley InterScience, 2009. 112: 345-352
    [54] 王晴遠, "高分子熔膠於彈臂搭接處之射出成形與分子配向性分析", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2010
    [55] J. J. Lewandowski, et al., "Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite." Materials Science and Engineering: A 107 (1989): 241-255.
    [56] C. Kang, et al. "Quantitative evaluation of nanoparticle dispersion based on modeling methods and image analysis: A case study on nano‐Sb2O3 filled Poly (butylene terephthalate) composites." Polymer Composites 42.6 (2021): 3098-3113.
    [57] R. Zhang, et al. "Porous poly (l‐lactic acid)/apatite composites created by biomimetic process." Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials 45.4 (1999): 285-293.
    [58] M. Ansari, et al. "Synthesis and characterisation of hydroxyapatite-calcium hydroxide for dental composites." Ceramics-Silikáty 55.2 (2011): 123-126.
    [59] N. K. de Moura, et al. "Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration." Materials Science and Engineering: C 117 (2020): 111327.
    [60] G. A. Stanciu, et al. "Investigation of the hydroxyapatite growth on bioactive glass surface." Journal of Biomedical & Pharmaceutical Engineering 1.1 (2007): 34-39.
    [61] W. Ali, et al. "Novel biodegradable hybrid composite of polylactic acid (PLA) matrix reinforced by bioactive glass (BG) fibres and magnesium (Mg) wires for orthopaedic application." Composite Structures 245 (2020): 112322.
    [62] A. Mehboob, et al. "Evaluation of unidirectional BGF/PLA and Mg/PLA biodegradable composites bone plates-scaffolds assembly for critical segmental fractures healing." Composites Part A: Applied Science and Manufacturing 135 (2020): 105929.
    [63] A. Sadeghi-Avalshahr, et al. "Effects of hydroxyapatite (HA) particles on the PLLA polymeric matrix for fabrication of absorbable interference screws." Polymer Bulletin 75.6 (2018): 2559-2574.
    [64] H. Saniei, et al. "Surface modification of PLA 3D-printed implants by electrospinning with enhanced bioactivity and cell affinity." Polymer 196 (2020): 122467.
    [65] J. I. Castro, et al. "Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications." Molecules 27.11 (2022): 3640.
    [66] E. F. Morgan, et al. "Bone mechanical properties in healthy and diseased states." Annual review of biomedical engineering 20 (2018): 119.
    [67] É. Lakatos, et al. "Material properties of the mandibular trabecular bone." Journal of medical engineering 2014 (2014).

    無法下載圖示 全文公開日期 2024/09/28 (校內網路)
    全文公開日期 2024/09/28 (校外網路)
    全文公開日期 2024/09/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE