簡易檢索 / 詳目顯示

研究生: 吳宗融
Tsung-Jung Wu
論文名稱: 以飛秒雷射進行3D列印支架後處理
Post-Process of 3D Printed Stent by Femtosecond Laser
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 廖健宏
陳品銓
鄧秉敦
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 周邊血管支架聚乳酸3D列印飛秒雷射
外文關鍵詞: peripheral arterial stent, polylactic acid, 3D printing, femtosecond laser
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 周邊動脈疾病(Peripheral artery disease,PAD)是指發生於非冠狀動脈、非腦部動脈的動脈血管疾病,主要為血管硬化、出血或阻塞,需依據不同嚴重程度給予適當治療。當發生肢體嚴重缺血時,會以經皮血管成形手術,使用氣球擴張或置入金屬支架,以暢通阻塞的血管。目前市售周邊血管支架大多以鎳鈦自膨脹支架為主,然而金屬支架仍有一定的再狹窄率及支架內再阻塞風險,因此使用可降解支架成為置入支架治療周邊動脈疾病的新選項。
    本研究以ANSYS輔助,設計出可以壓縮至2 mm (6 French)直徑以置入導管內,並可以氣球擴張至外徑5.4 mm的可降解聚乳酸周邊動脈支架,之後再利用3D列印的方式進行所設計支架製作。藉由調整不同列印參數以製作具有加工裕度的聚乳酸支架,並搭配飛秒雷射進行支架後處理。本研究透過雷射路徑規劃及支撐管圖形預切割的方式,成功以飛秒雷射後處理3D列印的聚乳酸支架,製作出結構寬度均勻、表面形貌平整、結構尺寸符合預期的聚乳酸支架成品。最後,本研究擴張支架至設計尺寸,並且量測支架擴張後抗壓力,實驗結果證明所製作支架可達到0.079 N/mm的設計需求,成功符合周邊動脈支架的要求規格。


    Peripheral artery disease (PAD), which is the arterial vascular diseases that occur in non-coronary arteries and non-cerebral arteries, is mainly caused by arteriosclerosis, hemorrhage, or occlusion. The appropriate treatment should be given according to different severity. When severe limb ischemia occurs, a percutaneous angioplasty procedure is usually applied and a balloon dilation catheter or a metal stent is used to expand the vessel. Currently, most of the peripheral vascular stent are nitinol self-expanding stent. However, metal stents still have the problems such as restenosis and the risk of re-occlusion in the stent. Therefore, the use of bio-degradable stents has become a new option as the treatment for peripheral arterial disease.
    With the ANSYS finite element analysis, a bio-degradable polylactic acid (PLA) peripheral arterial stent was designed. It can be crimped into a diameter 2 mm (6 French) implantation catheter and expanded to diameter 5.4 mm. The designed stent was then fabricated by 3D- printing. A PLA stent which had prearranged finish allowance was fabricated by adjusting different printing parameter and a femtosecond laser machine was then used to proceed the post-process to achieve the required dimensions and surface quality of stent. In this study, by the method of planning the laser cutting route and pre-cutting the support tube, the final PLA stent was successfully processed by femtosecond laser and the produced stent is with uniform structure width and shape, good surface and edge quality, and good dimension accuracy. Finally, the stent was expanded to the 5.4 mm diameter and the compression force of stent was measured. The result shows that the fabricated stent can reach the designed requirement 0.079 N/mm and meet the requirement of normal peripheral arterial stent.

    摘要 I Abstract III 致謝 V 第一章、 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 第二章、 文獻回顧 4 2.1. 血管內治療 4 2.2. 生物可降解支架 4 2.3. 積層製造 5 2.3.1. 材料擠出成形法 5 2.3.2. FDM支架製作 6 2.3.3. FDM列印PLA機械性質 8 2.4. 飛秒雷射加工可降解聚合物 10 第三章、 實驗流程 13 3.1. 支架設計與模擬 14 3.1.1. 支架繪製 15 3.1.2. 建立有限元素模型 17 3.1.3. 材料性質設定 17 3.1.4. 邊界條件設定 18 3.1.5. 網格大小與收斂性分析 21 3.2. 3D列印支架 23 3.2.1. 3D列印機及線材 24 3.2.2. 列印路徑規劃 25 3.2.3. 列印參數 26 3.3. 飛秒雷射加工 28 3.3.1. 雷射加工參數 29 3.3.2. 雷射切割路徑規劃 34 3.3.3. 圖形預切割不鏽鋼管 36 3.3.4. PLA支架對位後雷射加工 37 3.4. 實驗驗證 39 3.4.1. 支架壓縮 39 3.4.2. 氣球擴張 40 3.4.3. 支架抗壓測試 41 3.5. 使用設備與儀器 43 3.5.1. 3D列印機台 43 3.5.2. 飛秒雷射機台 43 3.5.3. 光學顯微鏡(Optical microscope,OM) 45 3.5.4. 壓縮裝置(Crimping Device) 45 3.5.5. 掃描式電子顯微鏡 46 第四章、 實驗結果 48 4.1. 支架設計與模擬 48 4.1.1. 支架壓縮模擬 48 4.1.2. 支架擴張模擬 49 4.1.3. 支架抗壓測試模擬 50 4.2. 3D列印支架 51 4.2.1. 列印路徑規劃 51 4.2.2. 列印參數 54 4.3. 飛秒雷射加工 58 4.3.1. 雷射聚焦位置 58 4.3.2. 圖形預切割不鏽鋼管 60 4.3.3. PLA支架雷射後處理 62 4.4. 實驗驗證 72 4.4.1. 支架壓縮實驗 72 4.4.2. 支架擴張實驗 73 4.4.3. 抗壓測試實驗 75 第五章、 結論與未來展望 77 5.1. 結論 77 5.1.1. 3D列印支架 77 5.1.2. 飛秒雷射後處理 77 5.1.3. 模擬與實驗驗證 78 5.2. 未來展望 79 參考文獻 80

    [1] 顏正杰,邱怡文,徐約翰,江培群,洪培豪, "血液透析患者周邊血管疾病之治療," vol. 28, no. 4, pp. 189-193, 2016.
    [2] 余法昌, "下肢動脈阻塞性疾病," vol. 9, no. 3, pp. 21-24, 2013.
    [3] G. Galyfos, G. Geropapas, I. Stefanidis, S. Kerasidis, I. Stamatatos, G. Kastrisios, S. Giannakakis, G. Papacharalampous, C. Maltezos., "Bioabsorbable stenting in peripheral artery disease," Cardiovascular Revascularization Medicine, vol. 16, no. 8, pp. 480-483, 2015.
    [4] S. T. W. v. Haelst, S. M. O. P. Weem, G. J. d. Borst, and F. L. Moll, "Current status and future perspectives of bioresorbable stents in peripheral arterial disease," Journal of Vascular Surgery, vol. 64, no. 4, pp. 1151-1159, 2016.
    [5] Y. Zhu, K. Yang, R. Cheng, Y. Xiang, T. Yuan, Y. Cheng, B. Sarmento, W. Cui, "The current status of biodegradable stent to treat benign luminal disease," Materials Today, vol. 20, no. 9, pp. 516-529, 2017.
    [6] 鄭正元,江卓培,林宗翰,林榮信,蘇威年,汪家昌,蔡明忠,賴維祥,鄭逸琳,洪基彬,鄭中緯,宋宜駿,陳怡文,賴信吉,吳貞興,許郁淞,陳宇恩, "3D列印積層製造技術與應用," 全華圖書股份有限公司, 2017.
    [7] D. Singh, R. Singh, and K. S. Boparai, "Development and surface improvement of FDM pattern based investment casting of biomedical implants: A state of art review," Journal of Manufacturing Processes, vol. 31, pp. 80-95, 2018.
    [8] A. Guerra, A. Roca, and J. de Ciurana, "A novel 3D additive manufacturing machine to biodegradable stents," Procedia Manufacturing, vol. 13, pp. 718-723, 2017.
    [9] T. Letcher and M. Waytashek, "Material Property Testing of 3D-Printed Specimen in PLA on an Entry-Level 3D Printer," presented at the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2014.
    [10] M. Grasso, L. Azzouz, P. Ruiz-Hincapie, M. Zarrelli, and G. Ren, "Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens," Rapid Prototyping Journal, vol. 24, no. 8, pp. 1337-1346, 2018.
    [11] 張國順,鄭壽昌, 現代雷射製造技術. 化學工業出版社, 2008, p. 459頁.
    [12] F. Hendricks, R. Patel, and V. V. Matylitsky, "Micromachining of bio-absorbable stents with ultra-short pulse lasers," in Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XV, 2015, vol. 9355.
    [13] A. Schiavone and L. G. Zhao, "A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment," Mechanics of Advanced Materials and Modern Processes, vol. 1, no. 1, p. 1, 2015.
    [14] 洪嘉宏, "應用飛秒雷射移除加工製程於鎳鈦膽管支架加工之研究 (A study of nitinol biliary stent fabrication by femtosecond laser ablation process)," 碩士, 機械工程系, 國立台灣科技大學, 2014.
    [15] 高慶隆, "5-French鎳鈦膽道支架研發(Development of 5-French Nitinol Biliary Stents)," 碩士, 機械工程系, 國立台灣科技大學, 2017.
    [16] B. H. P. Wu, "Method of crimping a polymeric stent," US Patent, vol. US20070271763A1, 2007.
    [17] A. Kumar, R. Ahuja, P. Bhati, P. Vashisth, and N. Bhatnagar, "Design Methodology of a Balloon Expandable Polymeric Stent," Journal of Biomedical Engineering and Medical Devices, vol. 4, no. 2, 2019.
    [18] C. Brandt-Wunderlich, W. Schmidt, N. Grabow, M. Stiehm, S. Siewert, R. Andresen, S. Klaus-Peter, "Support function of self-expanding nitinol stents – Are radial resistive force and crush resistance comparable? ," Current Directions in Biomedical Engineering, vol. 5, no. 1, p. 465, 2019.

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE