簡易檢索 / 詳目顯示

研究生: 華振廷
Chen-Ting Hua
論文名稱: 富勒烯複合式拋光液於單晶碳化矽晶圓化學機械拋光之研究
Study on Compound Slurry with Complex of Fullerene/2-Hydroxypropyl-β-Cyclodextrin (C60/HP-β-CD) in Chemical Mechanical Polishing of Monocrystalline Silicon Carbide Wafers
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 趙崇禮
Choung-Lii Chao
劉顯光
Hsien-Kuang Liu
蔡曜陽
Yao-Yang Tsai
田維欣
Wei-Hsin Tien
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 177
中文關鍵詞: 單晶4H碳化矽富勒烯複合式拋光液氣液輔助化學機械拋光
外文關鍵詞: 4H-SiC Wafer, Fullerene, Compound Slurry, Gas Liquid Assisted Chemical Mechanical Polishing (GLACMP)
相關次數: 點閱:292下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單晶碳化矽晶圓(Silicon Carbide, SiC)擁有高崩潰電壓、寬能隙及高熱傳導率之材料特性,因此像是電動車等高功率元件市場上有較大的需求,然而單晶碳化矽晶圓具有高硬度與高抗化學之材料性質,使其在製造過程中所花費時間冗長導致成本增加。本研究主要針對單晶4H碳化矽晶圓之化學機械拋光(Chemical Mechanical Polishing, CMP),並以降低其製程時間為目標進行研究。本研究建構一加入富勒烯之複合式拋光液(Compound Slurry, CS)並結合氣液輔助化學機械拋光(Gas Liquid Assisted Chemical Mechanical Polishing, GLACMP),此方法為在C60通氧後與氧原子結合並與碳化矽反應形成氧化層,達到提高製程效率的目標。研究方法先針對富勒烯與環糊精結合之水溶液的粒徑大小做研究,結果根據DLS與FESEM發現C60會吸附在膠體二氧化矽的上面。在浸泡實驗的結果中,經由XPS的結果得到碳化矽於浸泡C60/HP-β-CD+O2之水溶液後會生成Si-O鍵結與C-O鍵結,且在奈米壓痕的結果得到硬度從40.91GPa降低至33.57 GPa (17.94%)。應用於兩吋碳化矽晶圓之拋光製程中,CS+GLACMP之材料移除率(460.25 nm/hr)相較於普通CMP之材料移除率(419.48 nm/hr)提升了9.72%, CS+GLACMP之Ra (0.19 nm)與Sa (0.52 nm)相較於普通CMP之Ra (0.42 nm)與Sa (1.21 nm)分別改善了54.76%和57.02%,可有效地改善碳化矽晶圓的拋光效益。


    Monocrystalline silicon carbide (SiC) wafer has desirable properties such as high breakdown voltage, wide band gap and high thermal conductivity. It has high potential in high-power device market, such as electrical vehicles. However, high mechanical hardness and strong chemical inertness of SiC wafer make it very difficult to achieve a damage-free and scratch-free surface. This study aims to improve the planarization efficiency to shorten the process time in chemical mechanical polishing (CMP) of C-face 4H-SiC wafer. A compound slurry (CS) with fullerene/2-hydroxypropyl-β-cyclodextrin (C60/HP-β-CD) has been developed and combined with a gas liquid assisted CMP (GLACMP). Results of dipping tests of SiC in slurry, SiC surface can form Si-O bond and C-O bond after immersing in water-soluble fullerene with oxygen solution. Nanoindentation test shows that the hardness decreases to 33.57GPa from 40.91GPa. From the results of SiC CS+GLACMP to compare with the conventional SiC CMP, the material removal rate (MRR) is increased by 9.72% from 419.48 nm/hr to 460.25 nm/hr, and the surface roughness is decreased by 54.76% from Ra 0.42 nm to Ra 0.19 nm. The water-soluble fullerene with oxygen solution can form an easily removed oxide layer to increase polish efficiency. Future study can focus on high efficient of SiC wafer polishing.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIV 符號表 XVII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 6 第二章 文獻回顧 8 2.1 單晶碳化矽基板 8 2.2 不同製程之單晶碳化矽CMP 11 2.3 單晶碳化矽基板CMP拋光液 19 2.4 富勒烯拋光液相關CMP 26 2.5 單晶碳化矽CMP相關專利 32 2.5.1 單晶碳化矽CMP製程設備相關專利 32 2.5.2 單晶碳化矽CMP拋光液相關專利 34 2.6 文獻回顧總結 36 第三章 富勒烯複合式拋光液製程介紹 38 3.1 富勒烯複合式拋光液製備 38 3.1.1 富勒烯與環糊精介紹 38 3.1.2 富勒烯水溶液製備 41 3.1.3 富勒烯水溶液於不同pH值之粒徑大小 43 3.1.4 富勒烯水溶液於不同溫度與存放天數之粒徑大小 44 3.1.5 富勒烯水溶液於添加二氧化矽後之粒徑大小 45 3.1.6 富勒烯複合式拋光液調配 49 3.2 氣體輔助富勒烯複合式拋光液化學機械拋光 52 3.3 單晶4H-SiC基板材料反應機制 54 3.4 單晶4H-SiC靜態浸泡實驗 57 3.4.1 .XPS結果分析 57 3.4.2 硬度分析 60 第四章 實驗規劃與設備 65 4.1 實驗設備 65 4.1.1 .M15-PVS密閉式拋光機 65 4.1.2 .M-15P研磨拋光機 66 4.1.3 .HAS-9拋光液溫控攪拌系統 67 4.2 實驗耗材 68 4.2.1 研光盤 68 4.2.2 拋光墊 69 4.2.3 研光液 70 4.2.4 單晶4H碳化矽晶圓 72 4.3 實驗量測設備 73 4.4 實驗規劃 75 4.4.1 碳化矽於不同富勒烯複合式拋光液參數CMP分析(實驗A) 76 4.4.2 碳化矽於不同拋光製程參數CMP分析(實驗B) 77 4.4.3 碳化矽之加工時間效益分析(實驗C) 78 第五章 實驗結果與討論 79 5.1 拋光液參數與碳化矽CMP分析(實驗A) 80 5.1.1 二氧化矽粒徑分析 81 5.1.2 二氧化矽濃度分析 83 5.1.3 過氧化氫濃度分析 84 5.1.4 檸檬酸二銨濃度分析 86 5.1.5 富勒烯濃度分析 88 5.1.6 富勒烯複合式拋光液pH值分析 90 5.1.7 富勒烯複合式拋光液探討 91 5.2 拋光製程參數與碳化矽CMP分析(實驗B) 93 5.2.1 富勒烯水溶液與二氧化矽通氧分析 93 5.2.2 富勒烯複合式拋光液通氧分析 97 5.2.3 碳化矽材料移除模型 99 5.2.4 CS+GLACMP拋光製程探討 107 5.3 兩吋單晶碳化矽製程效益分析(實驗C) 108 5.3.1 兩吋單晶As-Pol碳化矽拋光效益探討 110 5.3.2 兩吋單晶碳化矽之次表破壞損傷分析 111 5.3.3 兩吋單晶碳化矽之CMP與CS+GLCMP製程效益分析 112 5.4 綜合結果與討論 116 第六章 結論與建議 117 6.1 結論 117 6.2 建議 118 參考文獻 119 附錄A 量測設備 122 附錄B 單晶4H-SiC表面粗糙度 128 附錄C 單晶4H-SiC浸泡實驗 138 附錄D 拋光液分析 142 附錄E 已發表過的期刊 144 作者簡介 155

    [1] H. Lin and A. Villamor, "Power SiC 2019:Materials, Devices and Applications," Yole development, France, 2019.
    [2] H. Akagi, "The next‐generation medium‐voltage power conversion systems," Journal of the Chinese Institute of Engineers, vol. 30, pp. 1117-1135, 2007.
    [3] D. Koruga, L. Matija, N. Mišic, and P. Rakin, "Fullerene C60: properties and possible applications," in Materials Science Forum, pp. 49-56, 1996.
    [4] 張士宸, "氣液輔助化學機械拋光應用於單晶碳化矽基板之平坦化製程分析研究," 碩士論文, 2016.
    [5] 陳鼎鈞, "單晶碳化矽基板之鑽石研光與化學機械拋光平坦化製程研究," 碩士論文, 2015.
    [6] Y. Zhou, G. Pan, X. Shi, S. Zhang, H. Gong, and G. Luo, "Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers," Tribology international, vol. 87, pp. 145-150, 2015.
    [7] 楊竣凱, "複合式能量化學機械拋光於單晶碳化矽基板平坦化製程之研究," 碩士論文, 2014.
    [8] H. Deng, K. Hosoya, Y. Imanishi, K. Endo, and K. Yamamura, "Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry," Electrochemistry Communications, vol. 52, pp. 5-8, 2015.
    [9] Y. Zhou, G. Pan, C. Zou, and L. Wang, "Chemical mechanical polishing (CMP) of SiC wafer using photo-catalyst incorporated pad," ECS Journal of Solid State Science and Technology, vol. 6, pp. P603-P608, 2017.
    [10] H. Deng, N. Liu, K. Endo, and K. Yamamura, "Atomic-scale finishing of carbon face of single crystal SiC by combination of thermal oxidation pretreatment and slurry polishing," Applied Surface Science, vol. 434, pp. 40-48, 2018.
    [11] H. Aida, T. Doi, H. Takeda, H. Katakura, S.-W. Kim, K. Koyama, et al., "Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials," Current Applied Physics, vol. 12, pp. S41-S46, 2012.
    [12] Y. Zhou, G. Pan, X. Shi, L. Xu, C. Zou, H. Gong, et al., "XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP)," Applied surface science, vol. 316, pp. 643-648, 2014.
    [13] 黃裕程, "氧化石墨烯複合式拋光液於單晶碳化矽晶圓化學機械拋光之研究," 碩士論文, 2017.
    [14] J. Lu, R. Chen, H. Liang, and Q. Yan, "The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the Fenton reaction," Precision Engineering, vol. 52, pp. 221-226, 2018.
    [15] 林妤靜, "氧化石墨烯複合式拋光液於單晶碳化矽晶圓之化學機械拋光製程分析研究," 碩士論文, 2019.
    [16] Y. Takaya, H. Tachika, T. Hayashi, K. Kokubo, and K. Suzuki, "Performance of water-soluble fullerenol as novel functional molecular abrasive grain for polishing nanosurfaces," CIRP annals, vol. 58, pp. 495-498, 2009.
    [17] Y. Takaya, H. Kishida, T. Hayashi, M. Michihata, and K. Kokubo, "Chemical mechanical polishing of patterned copper wafer surface using water-soluble fullerenol slurry," CIRP annals, vol. 60, pp. 567-570, 2011.
    [18] Y. Takaya, M. Michihata, T. Hayashi, R. Murai, and K. Kano, "Surface analysis of the chemical polishing process using a fullerenol slurry by Raman spectroscopy under surface plasmon excitation," CIRP Annals, vol. 62, pp. 571-574, 2013.
    [19] 邱上峰, "富勒烯複合拋光液應用於電致動力輔助銅化學機械拋光研究," 碩士論文, 2019.
    [20] T. Doi, A. Philipossian, and D. DeNardis, "Polishing apparatus and method of polishing work piece," US 7070486 B2, 2006.
    [21] C.-C. Chen, C. Ping-Shen, and T. Wei-Kang, "Supplying system of adding gas into polishing slurry and method thereof," US 9193032 B2, 2015.
    [22] 新田浩士, "Composition for polishing silicon carbide," W0 2011049216 A1, 2011.
    [23] K. Ashitaka, H. Morinaga, and A. Yasui, "Polishing composition," CN 103260827 A, 2015.
    [24] T. Fang, "Halite salts as silicon carbide etchants for enhancing CMP material removal rate for SiC wafer," US 20170158911 A1, 2018.
    [25] A. Djordjevic, B. Srdjenovic, M. Seke, D. Petrovic, R. Injac, and J. Mrdjanovic, "Review of synthesis and antioxidant potential of fullerenol nanoparticles," Journal of Nanomaterials, vol. 2015, 2015.
    [26] D. Iohara, F. Hirayama, H. Kansui, H. Aoshima, S. Yamana, M. Yano, et al., "Preparation of Hydrophilic Nanoparticles of C60 with High Resistance to Aggregation during Storage, using 2-Hydroxypropyl-β-cyclodextrin," Chemistry letters, vol. 38, pp. 1104-1105, 2009.
    [27] C. Park, H. Kim, H. Cho, T. Lee, D. Kim, S. Lee, et al., "Effect of relative surface charge of colloidal silica and sapphire on removal rate in chemical mechanical polishing," International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 6, pp. 339-347, 2019.
    [28] J. Adelene Nisha, V. Sridharan, J. Janaki, Y. Hariharan, V. Sastry, C. Sundar, et al., "Studies of C60 oxidation and products," The Journal of Physical Chemistry, vol. 100, pp. 4503-4506, 1996.
    [29] H. Nitta, A. Isobe, J. Hong, and T. Hirao, "Research on reaction method of high removal rate chemical mechanical polishing slurry for 4H-SiC substrate," Japanese Journal of Applied Physics, vol. 50, p. 046501, 2011.
    [30] Y.-H. Tsai, C.-C. A. Chen, K. Suzuki, P. Khajornrungruang, S.-F. Chiu, and C.-T. Hua, "Developed an advanced chemical mechanical planarization for 4H-SiC substrate by water-soluble inclusion complexes of fullerene," Japanese Journal of Applied Physics, 2020.
    [31] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of materials research, vol. 7, pp. 1564-1583, 1992.
    [32] S. Afreen, K. Kokubo, K. Muthoosamy, and S. Manickam, "Hydration or hydroxylation: direct synthesis of fullerenol from pristine fullerene [C 60] via acoustic cavitation in the presence of hydrogen peroxide," RSC advances, vol. 7, pp. 31930-31939, 2017.
    [33] C. Iuga, E. Ortíz, and A. Vivier-Bunge, "Antioxidant activity of fullerene C60 against OH free radicals: A quantum chemistry and computational kinetics study," NSTI-Nanotech, 2011.

    QR CODE