簡易檢索 / 詳目顯示

研究生: 周鈺承
Yi-cheng Chou
論文名稱: 功能性聚亞醯胺導熱型複合材料之合成與性質研究
The preparation and analysis of thermally conductive polyimide composite
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 劉貴生
Guey-sheng Liou
邱顯堂
Hsien-tang Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 120
中文關鍵詞: 一步法聚亞醯胺氮化硼氮化鋁熱傳導係數
外文關鍵詞: One-step method, Polyimide, Boron nitride, Aluminum nitride, Thermal conductivity
相關次數: 點閱:279下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要係以不同體積含量之氮化硼及混摻入不同體積含量之氮化鋁為填充材,以2,2-Bis(3-amino-4-hydroxy-phenyl)hexafluoropropane與4,4’-Oxydiphthalic Anhydride兩單體合成之聚亞醯胺為母材,製備導熱型複合材料,並探討複合材料之熱性質、微觀結構及介電性質等。
    根據文獻報導,以往聚亞醯胺複合材料係以二步法方式製備複合材料,將單體混合反應形成聚醯胺酸,加入陶瓷填充材後攪拌,入模後在高溫高壓下進行脫水縮合反應,而此種製備複合材料方式無法聚合出高分子量之聚亞醯胺,因此本實驗以一步法合成可溶型聚亞醯胺,並藉由非質子溶劑於室溫下溶解聚亞醯胺,摻入導熱型填充材,製備導熱型複合材料,複合材料成膜後,無需高壓處理,且具可撓性及熱導性質。
    實驗發現,氮化硼與聚亞醯胺製備之複合材料其微觀結構分析可發現填充材堆積型態對於熱傳導係數之影響,良好的堆積密度及型態可形成熱導通途徑,因此熱傳導係數提高。本研究也將氮化鋁以不同體積比摻入氮化硼/聚亞醯胺複合材料,發現氮化鋁之結構型態、粒徑等因素皆影響試片內部填充材堆積型態,導致熱傳導係數隨著氮化鋁量增加而下降。本實驗也針對不同烘乾溫度對氮化硼/聚亞醯胺複合材料之影響作探討,以氮化硼體積含量60vol%為例,將試片於160℃、200℃及250℃溫度下烘乾,發現當烘乾溫度只有160℃,由於試片內部殘留之溶劑較多,導致聲子傳遞時容易散射,當烘乾溫度到達250℃,可看到熱導係數提升3.3倍,由此結論可了解試片內部溶劑含量對熱傳係數的重要性。
    本實驗成功地藉由一步法製備出低介電及熱導型填充材(氮化硼,氮化鋁)/聚亞醯胺複合材料,當氮化硼含量達60vol%時,於250℃烘乾溫度下,其熱導係數為2.33W/m.k,介電常數為3.8。


    In this study, boron nitride and aluminum nitride were used as fillers with different volum ratio in the polyimide matices. The polyimide matrix was synthesized with 2,2-Bis(3-amino-4-hydroxy-phenyl)hexafluoropropane and 4,4’-Oxydiphthalic Anhydride monomers by one-step method. Microstructure and thermal and dielectic properties of the thermally conductive (BN, AlN)/PI composites were investigated.
    According to the published reports, most of the ceramic filler/polyimide composites were synthesized by a two-step method, with which the filler/xxx(PAA) mixed solution was molded with pressure at 300oC. However, the problem of the two-step method is the lower molecular weight of the polymized polyimide. In our research, the matrix was synethesized by a one-step method. Our synthesized PI could be dissolved by non-proton solvents such as DMAC and THF. Our fabrication procedure of the filler/PI composite could be made without pressing. The (BN, AlN)/PI composite layers are flexible and thermal conductive.
    From results of our research, the stacking states of boron nitride in composite had an effect on the thermal conductivity. With the increase in the BN volum ratio, the contact points among BN plates increase. Therefore, the thermal conductivity increase with volum ratio of BN. In this study, we also blended different ratios of AlN into BN/PI composites and investigate the effect of stack state on the thermal conductivity of composites. From SEM analyses, we can apparently found that the BN stacking was interrupted by AlN due to its irregular shapes, larger particle size etc. Therefore, a decrease of thermal conductivity with the AlN content was observed. Our 60% BN/polyimide compostes after drying at 250oC had shown thermal conductivity of 2.33 W/m•k and a dielectric constant of 3.8.

    目錄 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1-1前言 1 1-1-2 軟性電子 1 1-1-3 軟性電子應用 2 1-2 有機/無機複合材料之應用 5 1-3 研究動機與目的 12 第二章 基礎理論與文獻回顧 14 2-1 聚亞醯胺之介紹 14 2-1-1 加成型聚亞醯胺 (Addition Type) 14 2-1-2 縮合型聚亞醯胺 (Condensation Type) 15 2-1-3 改質型聚亞醯胺 17 2-1-4 可溶性聚亞醯胺簡介 18 2-1-5 聚醯胺酸的反應機制 20 2-1-6 熱亞醯胺化 (Thermal Imidization) 的反應機制 21 2-1-7 化學亞醯胺化(Chemical Imidization) 22 2-1-8 聚亞醯胺的優點及應用 23 2-2 氮化硼性質介紹 24 2-2-1 熱導性質 (Thermal conductive properties) 25 2-3 氮化鋁性質介紹 26 2-4 複合材料 27 2-4-1 無機填充材改質方法 28 2-4-2 粉體分散 31 2-5 複合材料之導熱特性 34 2-5-1 熱導率的影響因素 35 2-6 熱傳導理論 36 2-6-1 熱傳導 37 2-6-2 熱傳導機制 37 2-6-3 熱傳導分析方法 38 2-6-4 熱傳導公式 39 2-7 文獻回顧 42 2-7-1 氮化硼與高分子製備導熱型複合材料 42 2-7-2 氮化鋁與高分子製備導熱型複合材料 47 2-7-3 不同尺寸及型態之填充物混合製備熱導型複合材料 53 2-7-4 表面改質對於複合材料之熱導性影響 59 第三章 實驗方法與步驟 65 3-1 實驗儀器設備說明 65 3-1-1 高分子合成用之玻璃器材 65 3-1-2 超音波震碎機 65 3-1-3 行星式球磨機 65 3-1-4 機械攪拌器 66 3-1-5 水幫浦 66 3-2實驗藥品 66 3-3 實驗流程 67 3-3-1 聚亞醯胺(PI)合成 69 3-3-2 導熱型複合材料製備 70 3-4 性質量測及分析儀器 72 3-4-1 表面分析 72 3-4-2 結構分析 72 3-4-3 熱分析 73 3-4-4 介電性質分析 74 第四章 結果與討論 75 4-1本研究材料之基本結構分析 75 4-1-1 X光繞射(XRD)分析 75 4-1-2 傅立葉轉換紅外線光譜(FTIR)分析 76 4-2填充材(BN,AlN)/聚亞醯胺複合材料之熱性質分析 79 4-2-1 熱重量損失(TGA)分析 79 4-2-2 熱傳導分析 81 4-3 填充材(BN,AlN)/聚亞醯胺複合材料之顯微結構分析 85 4-4 填充材(BN,AlN)/聚亞醯胺之介電性質分析 93 4-5 填充材(BN,AlN)/聚亞醯胺複合材料之光學照片圖 96 第五章 結論 99

    [1] 洪金賢,工業材料,243期,pp.160(1996)

    [2] 江柏風,工業技術與資訊,199期(2008)

    [3] Jeroen van den Brand, Roel Kusters, Marco Barink, Andreas Dietzel, Flexible embedded circuitry:A novel process for high density, cost effective electronics. Microelectronic Engineering,87(2010)1861-1867.

    [4] Young-geun Ha, Sunho Jeong, Jinsong Wu, Myung-gil Kim, Vinayak P. Dravid, Antonio Facchetti, Tobin J.Marks, Flexible Low-Voltage Organic Thin-Film Transistors Enabled by Low-Temperature, Ambient Solution-Processable Inorganic/Organic Hybrid Gate Dielectrics, JACS,132(2010).

    [5] Soo-Jin Kim, Jang-Sik Lee, Flexible Organic Transistor Memory Devices, Nano letter, 2884-2890(2010).

    [6] Qian Feng Xu, Jian Nong Wang, Kevin D. Sanderson.Organic-Inorganic Composite Nanocoatings with Superhydrophobicity,Good Transparency and Thermal Stability.ACSnano ,2201-2209(2010).

    [7] Henk J. Bolink, Hicham Brine, Eugenio Coronado, Michele Sessolo, Ionically Assisted Charge Injection in Hybrid Organic-Inorganic Light-Emitting Diodes, Applied material & interfaces,2694-2698(2010).

    [8] Seonhee Jang, Youngkwan Seo, Joonrak Choi, Taehoon Kim, Jeongmin Cho, Sungeun Kim, Donghoon Kim, Sintering of inkjet printed copper nanoparticles for flexible electronics, Scripta Materialia,258-261,62(2010).

    [9] Elodie Boisselier, Abdou K. Diallo, Lionel Salmon, Catia Ornelas, Jaime Ruiz, Didier Astruc, Encapsulation and Stabilization of Gold Nanoparticles with “Click”Polyethyleneglycol Dendrimers, JACS,132, 2729-2742(2010).

    [10] 洪金賢,工業材料,243期,pp.166(1996)

    [11] Lighting Research Center

    [12] Boron Nitride Finds New Applications in Thermoplastic Compounds.Plastic Additives&Compounding May/June 2008.

    [13] 李淑真,私立中原大學聚亞醯胺(ODA-BSAA)/二氧化矽及聚亞醯胺(BAPN-ODPA)/二氧化矽混成材料之製備與性質研究。

    [14] T. T. Serafini, P. Delvig, G. R. Lightsey, J. Appl. Polym. Sci., 16, 905(1972)

    [15] J. K. Sutter, J. F. Water, M. A. Schuerman, ACS Polym. Prep., 33, 366(1992)

    [16] F. W. Harris, Chap. 1. in polyimides, Edited by D. Wilson, H. D. Stenzenberger and P. M. Hergenrother, Chapman and Hall, New York(1990)

    [17] M. L. Bender, Y-L. Chow, F. Chloupek, Intramolecular Catalysis of Hydrolytic Reactions.Ⅱ. The Hydrolysis of Phthalamic Acid, J. Am. Chem. Soc. 80, 5380-5384(1958)

    [18] J. A. Kreuz, J. Polym. Sci. Part A : Polym. Chem. 28, 3787(1990)

    [19] R. J. W. Reynold, J. D. Saddon, J. Polym. Sci. ,C23,45(1968)

    [20] 李淑真,私立中原大學聚亞醯胺(ODA-BSAA)/二氧化矽及聚亞醯胺。

    [21] J. Malinge、J. Garapon and B. Sillion,New developments in polybenzhydrolimide resins : Application in the field of heat resistant coatings,adhesives and laminates,British Polym. J.,Vol.20,431~439(1988)

    [22] A. Ya. Ardashnikov, I. Ye. Kardash, A. N. Pravednikov, Polym. Sci. USSR, 13, 2092(1971)

    [23] H. L. Tyan, Y. C. Liu., K. H. Wei, Chem. Mater, 11, 1942(1999)

    [24] T. Lan, P. D. Kaviratna, T. J. Pinnavaia, Chem. Mater, 6, 573(1994)

    [25] J. A. Kreuz, A. L. Endrey, F.P. Gay, C. E. Sroog, J. Polym. Sci. A-1, 4, 2067(1966)

    [26] V. M. Svetlichnyi, K. K. Kalnin’sh, V. V. Kurdryavtsev, M. M. Koton, Dokl. Akad. Nauk SSSR (Eng. Transl.) , 237, 63(1977)

    [27] A. G. Endry, US Pat. 317630, 317631,317632

    [28] 林金雀,聚亞醯胺薄膜全球市場與應用現況,化工資訊月刊,13, 7, 58~62(1999)

    [29] 顏慶山,全芳香族聚亞醯胺的加工與應用,高分子工業,No.77,73-79(1998)

    [30] Chopra, N. G. Zettl, A. Solid State Commun, 105, 297(1998)

    [31] Suryavanshi, A. P. Yu, M-F. Wen, J.; Tang, C. Bando, Y. Appl. Phys. Lett, 84, 2527(2004).

    [32] Mirkarimi, P. B. McCarty, K. F. Medlin, D. L. Mater. Sci. Eng, R21, 47(1997).

    [33] Paine, R. T. Narula, C. K. Chem. Rev,90, 73(1990).

    [34] A.Franco Junior; D.J Shanafield. Thermal Conductivity of Polycrystalline Aluminum Nitride(AlN) Ceramics. Ceramica vol.50 no.315 Sao Paulo July/Sept. 2004.

    [35] 皮特•斯壯 主編,陳憲偉 校訂,Polymer-nano Inorganic Composite Material

    [36] Rong, M.Z.;Zhang, M.Q. Ruan, W.H. Mater. Sci Technol,787,22(2006)

    [37] 李東霖,國立成功大學碩士論文。

    [38] Derjaguin, Landau, Verwey and Overbeek 1941-48)

    [39] Lewis, J. A. Colloidal Processing of Ceramics, J. Am. Ceram. Soc. 83 (10), 2341–59(2000).

    [40] Ruckenstein, E., Prieve, D. C. Adsorption and Desorpt -ion of Particles and Their Chromatographic Separation, AIChE Journal. 22(2),276-283(1976)

    [41] Rajagopalan, R. and Kim, J. S. Adsorption of Brownian Particlesin the Presence of Potential Barriers: Effect of Different Modes of Double-Layer Interaction, Journal of Colloid and Interface Science. 83(2), 428-448 (1981)

    [42] 張佐光主編,功能複合材料

    [43] Incropera, F.P.;DeWitt, D.P.Fundamentals of Heat and Mass Transfer, New York: J.Wiley 2002 5th ed.

    [44] 施智超、方偉權、呂明生、魏百駿、林麗瓊,工業材料,260(2008)144.

    [45] Richard F. Hill, Peter H. Supancic. J.Am.Ceram.Soc, 851-57 (2002)

    [46] Maxell, J.C. Stiffness and Expansion Estimates for Oriented Short Fiber Composite, Journal of Applied Polymer Science, 14(6): 1449-1471(1969).

    [47] S. Cheng and R. Vachon, “The Prediction of the Thermal Conductivity of Two and Three Phase Solid Heterogeneous Mixtures, “ J. Heat Mass Transfer, 12,249-64(1969)

    [48] L. Nielsen, “Generalized Equation for the Elastic Moduli fo Composites,” J.Appl. Phys.,41,4626-27

    [49] L. Nielsen, “Thermal Conductivity of Particulate-Filled Polymers,” J.Appl.Polymer Sci., 17, 3819-20

    [50] L. Nielsen, “The Thermal qnd Electrical Conductivity of Two –Phase Systems,” Ind. Eng. Chem. Fundam.

    [51] H. Hatta and M. Taya, “Equivalent Inclusion Method for Steady State Heat Conduction in Composites,” Int. J. Eng. Sci.,24[7] 1159-72(1986).

    [52] Yun Sheng Xu, D.D.L.Chung, Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Composite Interfaces,Vol.7,No.4,pp.243-256(2000)

    [53] Hatsuo Ishida, Sarawut Rimdusit, “Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine”. Thermochimica Acta 177-186, 320(1998).

    [54] Wenying Zhou, Shuhua Qi, Haidong Li, Shiyu Shao, “Study on insulating thermal conductive BN/HDPE composites”. Thermochimica Acta 36-42, 452(2007).

    [55] Kimiyasu Sato, Hitomi Horibe, Takashi Shirai, Yuji Hotta, Hiromi Nakano, Hideaki Nagai, Kenshi Mitsuishi, Koji Watari, Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J.Mater.Chem, 2749-2752, 20(2010).

    [56] Yun Sheng Xu, D.D.L.Chung, Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Composite Interfaces,Vol.7,No.4,pp.243-256(2000)

    [57] Giuseppe Pezzotti, Ikuko Kamada, Sadao Miki, “Thermal conductivity of AlN/polystyrene interpenetrating network” Journal of the European Ceramic Society 1197-1203, 20(2000)

    [58] Wenying Zhou, Thermal and dielectric properties of the AlN particles reinforced linear low-density polyethylene composites, Thermochimica Acta 183-188, 512(2011).

    [59] Shu-Hui Xie, Bao-Ku Zhu, Ju-Biao Li, Xiu-Zhen Wei, Zhi-Kang Xu, Preparation and properties of polyimide/aluminum nitride composites, Polymer testing 797-801, 23 (2004).

    [60] Tung-Lin Li, Steve Lien-Chung Hsu, Enhanced Thermal Conductivity of Polyimide Film via a Hybrid of Micro-and Nano-sized Boron Nitride, J.Phys.Chem. B 6825-6829,114(2010).

    [61] K.C. Yung, H. Liem, Enhanced Thermal Conductivity of Boron Nitride Epoxy-Matrix Composite Through Multi-Modal Particle Size Mixing, Journal of Applied Polymer Science, Vol.106,3587-3591(2007).

    [62] Richard F.Hill, Peter H. Supancic, Thermal Conductivity of Platelet-Filled Polymer Composites, J.Am.Ceram.Soc,85,851-57(2002).

    [63] B.L.Zhu, J.Ma, J. Wu, K.C.Yung, C.S.Xie, Study on the Properties of the Epoxy-Matrix Composites Filled with Thermal Conductive AlN and BN Ceramic Particles, Journal of Applied Polymer Science,Vol.118,2754-2764(2010).

    [64] Karnthidaporn Wattanakul, Hathaikarn Manuspiya, Nantaya Yanumet, The adsorption of cationic surfactants on BN surface: Its effects on the thermal conductivity nad mechanical properties of BN-epoxy composite, Colloids and Surfaces A: Physicochem, Eng. Aspects ,203-210, 369(2010).

    [65] Wenyi Peng, Xingyi Huang, Jinhong Yu, Pingkai Jiang, Wenhao Liu, Electrical and thermophysical properties of epoxy/aluminum nitride nanocomposites: Effects of nanoparticle surface modification, Composites: Part A,1201-1209,41(2010).

    [66] Kimiyasu Sato, Hitomi Horibe, Takashi Shirai, Yuji Hotta, Hiromi Nakano, Hideaki Nagai, Kenshi Mitsuishi, Koji Watari, Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J.Mater.Chem, 2749-2752, 20(2010).

    [67] 劉鎮,私立輔仁大學,氮化硼陶瓷材料之合成與其介電性質研究。

    [68] Z. X. BI, Y. D. Zheng, R. Zhang, S.L. GU, X. Q. Xiu, L. L. Zhou, B. Shen, D. J. Chen, Y. Shi, Dielectric properties of AlN film on Si substrate, Journal of Material Science: Material In Electronics,317-320,15(2004).

    QR CODE