簡易檢索 / 詳目顯示

研究生: 廖益樟
Yi-Jhang Liao
論文名稱: 預鍍鎳層對低碳鋼熱浸鍍鋁於高溫腐蝕之作用
Effect of Nickel Plating on High Temperature Corrosion Behavior of Hot-Dipping Low-Carbon Steel
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 鄭偉鈞
Wei-Chun Cheng
開物
Wu Kai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 85
中文關鍵詞: 熱浸鍍低碳鋼恆溫氧化熱循環鋁化層氮化鋁
外文關鍵詞: Hot-dipping, low carbon steel, isothermal, thermal cycle, aluminide layer, AlN
相關次數: 點閱:328下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究於低碳鋼表面以電鍍方式鍍鎳層後進行熱浸鍍純鋁後,於750 ℃靜滯空氣進行恆溫氧化、熱循環實驗與氯化鈉高溫腐蝕實驗。探討鎳鋁化塗層之相變化過程、動力學、氯化鈉高溫腐蝕與空氣氧化之差異,並與低碳鋼熱浸鍍純鋁比較兩者鍍層之抗氧化性及熱循環之行為,同時探討低碳鋼熱浸鍍純鋁,鋁化層中AlN的生成原因。
      實驗結果顯示,預鍍鎳低碳鋼熱浸鋁化塗層,由表面至基材分別為純鋁塗層、NiAl3、Ni2Al3、NiAl、Ni3Al與純鎳層。經短時間擴散後,純鋁塗層與NiAl3轉變為Ni2Al3,經120小時擴散,大部份Ni2Al3變為NiAl相。鎳鋁化層中的鎳鋁交互擴散,在NiAl比Ni3Al有較低的活化能障,造成其成長速率較高。預鍍鎳低碳鋼熱浸鍍鋁低碳鋼熱浸鍍純鋁相比,在高溫空氣環境具有較優異的抗氧化性與受熱循環後之表現。
      預鍍鎳低碳鋼熱浸鋁經氯化鈉高溫腐蝕,由於氯化鈉與鎳、鋁之反應速率不同,較多量的鋁被消耗,表面主要由NiAl相組成。低碳鋼熱浸鋁化層在高溫空氣氧化時,大氣中的氮會進Fe2Al5,當Fe2Al5轉變成為B2結構的FeAl相,由於溶解度的降低,針狀AlN析出於FeAl相中。


    The purpose of this study is to investigate the nickel-plating effects under various Ni-Al and Fe-Al layers on phase transformation, corrosion kinetics, and thermal-cycling oxidation behavior of hot-dipping low-carbon steel at 750 ℃ in dry air with and without NaCl deposits. The results will compare to those of the same steel directly hot-dipped Al (without Ni-plating), and discuss the possible reasons to form AlN in the substrate after air oxidation.
    The results showed that the Ni-Al layers formed from top coating to the substrate consisted of NiAl3, Ni2Al3, NiAl, Ni3Al, and pure-nickel layers. The NiAl3, layer was transferred into the Ni2Al3 layer after an initial inter-diffusion reason about 20 min, while most the Ni2Al3 phase was transferred into the NiAl phase after a 120-hr exposure. Due to the lower activation energies to grow both NiAl and Ni3Al phases, their growth rates were much faster than those of other Ni-Al phases. It was found that the steel with nickel-plating treatment exhibited an excellent oxidation and thermal-cycling resistance with respect to that of the free nickel-plating steel.
    In addition, the surface of the nickel-plating steel became mostly NiAl phase after hot corrosion at 750 ℃ when mostly Al was preferential consumed under a reaction with NaCl. Besides, the AlN precipitates formed on the Ni-plating steel after the oxidation in dry air. Very likely, the observed AlN was due mostly to reducing the nitrogen solubility in the substrate when the Fe2Al5 phase transferred into FeAl, which in turn caused inward diffusion of nitrogen into the substrate and reacted with Al to form AlN.

    目錄 第一章 前言……………………………………………………………1 第二章 文獻回顧……………………..……………………..…………3 2.1 電鍍…………………………………………………...…………3 2.1.1 基本原理………………………………………….………...…3 2.1.2 薄膜的成核與成長……..…………………………………..3 2.1.3 鍍層均勻性…………………………………………………5 2.1.4 極化現象……………………………………………………6 2.1.5 法拉第定律…………………………………………………8 2.1.6 電源供應……………………………………………………8 2.1.7 鍍鎳………………………………………………..………..9 2.1.8 電鍍的操作條件…………………………………..………10 2.2 熱浸鍍鋁……………………………………………….………11 2.2.1 熱浸鍍鋁形貌…………………………………….…….…11 2.2.2 Fe2Al5……………………………………………….……...13 2.2.3 熱浸鍍鋁擴散後的組成相…………………………….….15 2.3 鎳鋁擴散偶………………………………………………….…16 2.4 氯化鈉腐蝕………………………………………………….…19 2.4.1 熱腐蝕反應機制………………………………………..…19 2.4.2 腐蝕的評估……………………………………….…….…21 2.5 熱循環………………………………………………….………22 第三章 實驗方法…………………………………….…….…………24 3.1 實驗流程……………………………………….…...….………24 3.2 實驗設備………………………………………....…….………25 3.3 試片準備……………………………………....……….………25 3.4 電鍍流程………………………………………….…….…...…26 3.4.1 試片前處理…………………………………….….………26 3.4.2 電鍍鎳作業…………………………………….….………26 3.5 熱浸鍍鋁作業…………………………………...….….………28 3.5.1 熱浸鍍鋁作業……………………………………..………28 3.5.2 試片後處理…………………………………….….………28 3.6 恆溫氧化實驗……………………………………….....………29 3.6.1 高溫氧化……………………………………………..……29 3.6.2 熱循環試驗…………………………………..……………29 3.7 實驗分析………………………………………...…..…………29 3.7.1 金相觀察分析…………………………………..…………29 3.7.2 X-ray繞射分析………………………………………....…30 3.7.3 SEM觀察與成分分析…………….………………………30 第四章 結果與討論………………………………..…………………31 4.1 電鍍實驗………………………………………………….……31 4.2 熱浸鍍鋁實驗………………………………………………….34 4.2.1 預鍍鎳低碳鋼熱浸鍍鋁…………………………..………34 4.2.2 低碳鋼熱浸鍍鋁………………………………………..…38 4.3 恆溫氧化…………………………………………………….…40 4.3.1 相變化…………………………………………………..…40 4.3.2 動力學…………………………………………..…………57 4.4 氯化鈉腐蝕…………………………………………………….62 4.5 熱循環………………………………………………………….65 第五章 結論………………………………………………..…………70 參考文獻………………………………………………………………..71 附錄1 恆溫氧化之截面金相……………………………….…...……76 附錄2 XRD 繞射分析……………………………………….………80 附錄3 計算過程……………………………………………..…..……84

    [1] 柯賢文,腐蝕及其防制,全華科技圖書,1994。
    [2] C. J. Wang and S. M. Chen, “The high-temperature oxidation behavior of hot-dipping Al–Si coating on low carbon steel”, Surface and Coatings Technology, 200, 6601 (2006).
    [3] T. Sasaki and T. Yakou, “Features of intermetallic compounds in aluminized steels formed using aluminum foil”, Surface and Coatings Technology, 201, 2131 (2006).
    [4] T. L. Hu, H. L. Huang, D. Gan, and T. Y. Lee, “The microstructure of aluminized type 310 stainless steel”, Surface Coatings Technology, 201, 3509 (2006).
    [5] K. Bouche, F. Barbier, and A. Coulet, “Intermetallic compound layer growth between solid iron and molten aluminum”, Materials Science and Engineering A, 249, 167 (1998).
    [6] G. H. Awan and F. U. Hasan, “The morphology of coating/substrate interface in hot-dip –aluminizes steels”, Materials Science Engineering A, 472, 157 (2008).
    [7] E. Frutos, J. L. Gonzalez-Carrasco, C. Capdevila, J. A. Jimenez, and Y. Houbaert, “Development of hard intermetallic coatings on austenitic stainless steel by hot dipping in an Al-Si alloy”, Surface Coating Technology, 203, 2916 (2009).
    [8] D. Wang, Z. Shi, and L. J. Zou, “A liquid aluminum corrosion resistance surface on steel substrate”, Applied Surface Science, 214 304 (2003).
    [9] S. Kobayashi and T. Yakou, “Control of intermetallic compound layers at interface betweeen steel and aluminum by diffusion-treatment”, Materials Science Engineering A, 338, 44 (2002).
    [10] Y. Zhang, B. A. Pint, K.M. Cooley, and J. A. Haynes, “Effect of nitrogen on the formation and oxidation behavior of iron aluminide coatings”, Surface Coatings Technology, 200, 1231 (2005).
    [11] D. B. Miracle, “The physical and mechanical properties of NiAl”, Acta Metallurgica, 41, 649 (1993).
    [12] 張榮珍,表面處理,文京圖書,1988。
    [13] T. Watanabe, Nano-Plating, Elsevier, 2004.
    [14] 柯賢文,表面與薄膜處理技術,全華科技圖書,2005
    [15] Y. Y. Chang, C. C. Tsaur, and J. C. Rock, “Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation” Surface Coatings Technology, 200, 6588 (2006).
    [16] G. Eggeler, W. Auer, and H. Kaesche, Z. Metallkunde, 77, 239
    (1986).
    [17] G. Eggeler, H. Vogel, J. Friedrich, and H. Kaesdche, Pract. Met., 22, 163 (1985).
    [19] D. Wang and Z. Shi, “Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel”, Applied Surface Science, 227, 255 (2004).
    [20] K. Stein-Fechner, J. Konys, and O. Wedemeyer, “Investigations on the transformation behavior of the intermetallic phase (Fe, Cr)2Al5 formed on MANET II steel by aluminizing”, Journal of Nuclear Materials, 249, 33 (1997).
    [21] A. Bahadur and O. N. Mohanty, Materials Transaction, JIM, 32, 1053 (1991).
    [22] 鄭維仁、王朝正,以EBSD觀察低碳鋼熱浸鋁化層的成長行為,防蝕工程,第二十三卷,第二期,2009,第117-124頁。
    [23] J. M. Brossard, B. Panicaud, J. Balmain, and G. Bonnet, “Modelling of aluminized coating growth on nickel”, Acta Materialia, 55, 6586 (2007).
    [24] St. Frank, S. V. Divinki, U. Sodervall, and Chr. Herzig, “Ni tracer diffusion in the B2-compound NiAl: influence of temperature and composition”, Acta Materialia, 49, 1399 (2001).
    [25] A. Chien, D. Gan, Q. Shen, and P. Shen, “Microstructures of two-stage aluminized coatings on pure Ni”, Materials Science and Engineering A, 272, 207 (1999).
    [26] R. Nakamura, K. Takasawa, Y. Yamasaki, and Y. Iijima, Inermetallics, 10, 105 (2000).
    [27] H. Wei, X. Sun, Q. Zhen, H. Guan, and Z. Hu., “Estimation of interdiffusivity of the NiAl Phase in Ni–Al binary system”, Acta Materialia, 52, 2645 (2004).
    [28] P. Wellner, O. Kraft, G. Dehm, J. Andersons, and E. Arzt, “Channel cracking of β-NiAl thin films on Si substrates”, Acta Materialia, 52, 2325 (2004).
    [29] W. F. Smith and J. Hashemi, Foundations of materials science and engineering, McGraw Hill, fourth editon.
    [30] M. Watanbe, Z. Horita, D. J. Smith, M. R. McCartney, T. Sano, and M. Nemoto, “Electron microscopy study of Ni-Ni3Al diffusion-couple interface-I. Microstructural observation and microchemical analysis”, Acta metallurgica Materialia, 42, 3381(1994).
    [31] 王朝正,氯化鈉熱腐蝕之回顧,防蝕工程,第12卷,第1期,1998,第47-63頁。
    [32] Y. Wang, Z. K. Liu, and L. Q. Chen, “Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations”, Acta Materialia, 52, 2671 (2004).
    [33] G. A. Lopez, S. Sommadossi, P. Zieba, W. Gust, and E. J. Mittemeijer, “Kinetic behaviour of diffusion-soldered Ni-Al-Ni interconnections”, Materials Chemistry and Physics, 78, 459 (2002).
    [34] A. S. Smigelskas and E. O. Kirkendall, Transaction AIME, 171, 130 (1947).
    [35] F. D. Geib and R. A. Rapp, “Simultaneous chromizing — Aluminizing coating of low-alloy steels by a halide-activated, pack-cementation process”, Oxidation of Metals, 40, 213 (1993).
    [36] A. Aguero and R. Muelas, “Steam Oxidation of Slurry Aluminide Coatings on Ferritic Steels for Advanced Coal-Fired Steam Power Plants”, Materials Science Forum, 461, 957 (2004).
    [37] R. E. Reed-Hill and R. Abbaschian, “Physical metallurgy principles”, Third edition.
    [38] C. Wagner, “The evaluation of data obtained with diffusion couples of binary single phase and multiphase system”, Acta metallurgica, 17, 99 (1969).
    [39] 李志誠、黃寒青、開物,” 鎳基超合金Rene-80、Inconel-792、Incoenl-617和Haynes-230之高溫氧化行為”,防蝕工程,第二十卷第一期,57 (2006)。
    [40] M. M. P. Janssen and G. D. Rieck, Trans. AIME, 239, 1372 (1967)
    [41] S. P. Garg , G. B. Kale, R. V. Patil, and T. Kundu, “Thermodynamic interdiffusion coefficient in binary systems with intermediate phases”, Intermetallics, 7, 907 (1999).
    [42] 王朝正、何天佐,”鐵鉻(鎳)不銹鋼於硫氯混和鹽之熱腐蝕”,防蝕工程,第十五卷第四期,178 (2001)。
    [43] 魏豐義,“金屬和合金在氧化中應力的生成及消除機構”,防蝕工程,第一卷第十期,1 (1987)。
    [44] 張永忠,鐵錳鋁碳合金沉基氯化鈉之高溫腐蝕,國立台灣科技大學機械所博士論文,2002。
    [45] 鄭維仁、廖益樟、王朝正,預鍍鎳對低碳鋼熱浸鋁化層其顯微結構與組成相之影響,99年度防蝕工程年會,論文編號D03。
    [46] W. J. Cheng, C. J. Wang, Applied Surface Science, “Study of microstructure and phase evolution of hot-dipped aluminide mild steel during high-temperature diffusion using electron backscatter”, 257, 4663 (2011).
    [47] C. S. Giggins and F. S. Pettit, J. Electrochem. Soc., 118, 1982 (1971).

    QR CODE