簡易檢索 / 詳目顯示

研究生: 徐偉倫
Wei-lun Hsu
論文名稱: 合成anthraquinone側基之新聚醯亞胺與聚醯胺及其性質研究
Synthesis and Characterization of New Polyimides and Polyamides with Anthraquinone Pendent Groups
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 陳志堅
Jyh-Chien Chen
王健珍
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 93
中文關鍵詞: 聚醯亞胺聚醯胺
外文關鍵詞: Polyimides, Polyamides
相關次數: 點閱:191下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗是由含anthraquinone側基之新二胺單體,所製備的一系列聚醯亞胺。所合成聚醯胺酸的固有黏度範圍在0.56~1.05 dL/g,可溶型的聚醯亞胺黏度則為0.82 dL/g,這些聚醯亞胺可溶於m-cresol、
    o-chlorophenol等溶劑中,其抗張強度於46~152 MPa之間,斷裂伸長率為4.5~11.3%之間,經由DMA測試所合成之聚醯亞胺的玻璃轉移溫度介於303~401℃之間,經由TGA測試所合成之聚醯亞胺的熱安定性,其10%熱重量損失,於空氣下介於543~574℃之間,於氮氣下介於551~574℃之間,於氮氣下600℃燃燒殘餘率介於77~83%之間。
    經由UV/Visible測試所合成之聚醯亞胺之光學性質在溶液狀態下之最大吸收波長在316~321 nm之間,經由UV起始吸收波長(λonset)所得之能隙(Eg)範圍在3.0~3.05 eV之間。經由PL光譜顯示,其激發螢光在596~647nm之間,屬於紅光的範圍。
    最後,藉由循環伏安計量法(CV) 測試所合成之聚醯亞胺之電化學性質,發現其半波電位在1.25~1.4 V之間;HOMO值在-5.61~-5.76eV之間;LOMO值在-2.56~-2.74eV之間。

    另外由含anthraquinone側基之新二胺單體與芳香族二酸所合成的聚醯胺的固有黏度分別為0.42、1.02 dL/g。這些聚醯胺可溶於NMP、DMAc、m-cresol、o-chlorophenol等溶劑中,其抗張強度分別為49、62 MPa,斷裂伸長率分別為3、5%,經由DMA測試所合成之聚醯胺的玻璃轉移溫度分別為266、288℃,經由TGA測試所合成之聚醯胺的熱安定性,其10%熱重量損失,於空氣下分別為494、534℃,於氮氣下分別為496、512℃,於氮氣下600℃燃燒殘餘率分別為72、74%。
    經由UV/Visible測試所合成之聚醯亞胺之光學性質在溶液狀態下之最大吸收波長分別為317、310 nm,經由UV起始吸收波長(λonset)所得之能隙(Eg)分別為2.92、2.93 eV。經由PL光譜顯示,其激發螢光分別在622、612nm,屬於紅光的範圍。
    最後,藉由循環伏安計量法(CV) 測試所合成之聚醯亞胺之電化學性質,發現其半波電位分別為0.96、0.99 V;HOMO值分別為-5.32、-5.35eV;LOMO值分別為-2.4、-2.42eV。


    A series of polyimides containing pendent anthraquinone groups were synthesized. The poly(amic-acid)s had inherent viscosities of 0.56~1.05 dL/g. The soluble polyimide had inherent viscosities of 0.82 dL/g. The polyimide were soluble in m-cresol、o-chlorophenol. The polymer films had tensile strengths of 46~152MPa, and elongation to break of 4.5~11.3%. The dynamic mechanical analysis (DMA) reveals that the glass transition temperatures ranged on 303∼401℃. In addition, the temperatures of 10% weight loss in air and nitrogen ranged on 543~574℃ and 551~574℃, respectively.
    In the UV/Visible spectra, those polyimides had strong absorption bands from 316~321 nm in solution state. The energy band gaps of polymers calculated from the onset absorption wavelength of UV spectra in solution state were in the range from 3.0~3.05 eV. The photoluminescence spectra showed maximum bands ranged on 596~647nm in the red region.
    In addition, cyclic voltammetry (CV) was employed to investigate the electrochemical behaviors of polyimides. The results showed that reversible oxidation redox couples at E1/2 ranged on 1.25~1.4 V. The HOMO and LOMO energy levels of the polyimides ranged on 5.61~5.76eV and 2.56~2.74eV, respectively.

    A series of polyamides containing pendent anthraquinone groups were synthesized. The polyamides had inherent viscosities of 0.42 and 1.02 dL/g, respectively. The polyamide were soluble in N-Methyl-2-pyrrolidone (NMP) , N,N'-Dimethylacetamide (DMAc)、m-cresol、o-chlorophenol. The polymer films had tensile strengths of 49 and 62MPa, respectively and elongation to break of 3 and 5%, respectively. The dynamic mechanical analysis (DMA) reveals that the glass transition temperatures were 266 and 288℃, respectively. In addition, the temperatures of 10% weight loss in air and nitrogen were 494、534℃ and 496、512℃, respectively.
    In the UV/Visible spectra, those polyamides had strong absorption bands at 317 and 310 nm in solution state, respectively. The energy band gaps of polymers calculated from the onset absorption wavelength of UV spectra in solution state were 2.92 and 2.93 eV, respectively. The photoluminescence spectra showed maximum bands were 622 and 612 nm in the red region, respectively.
    In addition, cyclic voltammetry (CV) was employed to investigate the electrochemical behaviors of polyamides. The results showed that reversible oxidation redox couples at E1/2 were 0.96 and 0.99 V, respectively. The HOMO energy levels of the polyamides were -5.32、-5.35eV, respectively. The LOMO energy levels of the polyamides were -2.4 and -2.42eV, respectively.

    致謝………………………………………………….………………….Ⅰ 摘要……………………………………………………………………Ⅱ Abstract…………………………………………………………………Ⅳ 目錄……………………………………………………………………Ⅶ Table索引………………………………………………………………Ⅹ Figure索引…………………………………...………………………ⅩⅠ 第一章 緒論…………………………………………………………1 1-1聚醯亞胺簡介……………………………………………………1 1-2 聚醯亞胺的合成方法…………………………….………………2 1-3 聚醯亞胺的改質……………………………………….…………6 1-4 聚醯亞胺的應用…………………………………………………7 1-5聚醯胺的簡介…………………………………………………9 1-6聚醯胺的合成方式………………………………………………9 1-7聚醯胺的改質……………………………………………………14 1-8聚醯胺的應用……………………………………………………15 1-9研究動機與目的………………………………………………17 第二章實驗…………………………………………………………19 2-1實驗藥品…………………………………………………………19 2-2實驗程序…………………………………………………………23 2-2-1 單體製備…………………………………………………23 2-2-2聚醯亞胺的合成……………………………………………25 2-2-3聚醯胺的合成……………………………………………..27 2-3 單體鑑定及聚合物之物性與化性分析………………………28 第三章 結果與討論………………………………………………31 3-1 製備2-(bis(4-aminophenyl)amino)anthraquinone…...…31 3-1-1 單體之製備…………………………...……………………31 3-1-2 單體之鑑定………………………………...………………31 3-2聚醯亞胺的合成……………………………………………33 3-3聚醯亞胺的物性分析……………………………………………35 3-3-1溶解度測試……………………………….…………………35 3-3-2機械性質測試…………………………………….…………36 3-3-3熱性質測試……………………………………….…………37 3-3-4光學與電化學性質測試………………………….…………38 3-4聚醯胺的合成………………………………………………….40 3-4-1溶解度測試…………………………………….……………41 3-4-2機械性質測試………………………………………………42 3-4-3熱性質測試………………………………….………………42 3-4-4光學與電化學性質測試………………….…………………44 第四章 結論……………………………………………….…………46 4-1 聚醯亞胺…………………………………………….……………46 4-2 聚醯胺………………………………………………….…………47 參考文獻………………………………………………………………49

    1.T.M. Bogert, R.R. Renshaw, J. Am. Chem. Soc. 30, 1140 (1908)
    2.P.M. Heigenisher, N.J. Johnstin, ACS Symp.Ser132, American Chemical Society Washington, DC 3 (1980)
    3.林金雀,聚醯亞胺樹脂在電子相關產業之應用,化工資訊月刊 13, 29 (1999)
    4.D. Wilson, H.D. Stenzenberger, P.M. Hergenrother, Polyimides Blackie & Son,London 1 (1990)
    5.N. A. Adrova, M. I. Bessonov, L. A. Laius, A. P. Rudakov, Polyimide:A new class of thermally stable polymers(in Russian), Nauka, Leningrad1, (1968)
    6.李伯毅,正型鹼性水溶液顯影感光性聚亞醯胺材料之研究,國立成功大學化工研究所碩士論文,(2002)
    7.F.W. Harris, S.L-C. Hsu, High Perform. Polym. 1, 1, (1989)
    8.Y. Oishi, M. Ishida, M.A. Kakimoto, Y. Imai, J. Polym. Sci. Part A: Polym. Chem. 30, 1027 (1992)
    9.A. C. Misra, G. Tesoro, G. Hougham, S. M. Pendharkar, Polymer 33, 1078 (1993)
    10.W.G. Kim, A.S . Hay, Macromolecules 26, 5275 (1993)
    11.H.J. Jeong, M.A. Kakinoto, Y.I. Mai, J. Polym. Sci. Part A:Polym. Chem. 29, 1691 (1991)
    12.C.P. Yang, W.T. Chen, Macromolecules 26, 4865 (1993)
    13.P.A. Falcigno, S. Jasne, M. King, J. Polym. Sci. Part A:Polym. Chem. 29, 1691 (1991)
    14.H.G. Rogers, R.A. Gaudiana, W.C. Hollinsed, P.S. Kalyanaraman, J.S. Manello, C. McGoWan, R.A. Minns and R. Sahatjian, Macromolecules 18, 1085 (1985)
    15.曾煒展,聚醯胺酸正型光阻劑之製備及特性探討,國立成功大學化工研究所碩士論文,(2001)
    16.江選雅、張至芬,聚醯亞胺的合成及其在LCD上的應用,化工資訊月刊,Vol.13,NO.7,43(1999).
    17.C.Harbordt, Ann.Chem.Pharm.,123, 287, (1862)
    18.S.Gabriel, T.A.Maas, Ber.Dtsch.Chem.Ges.,32, 1266, (1899).
    19.W.H.Carothers, U.S.Pat.2, 130,523, 1938 to E.I.du Pont de Nemours & Co.;C.A.,32,9498, (1938).
    20.W.Michler, A.Zimmermann, Ber.Dtsch.Chem.Gesel., 14, 2177, (1881).
    21.M.Frankel, Y.Liwschitzy, A.Zilkha, Experientia, 9, 179, (1953).
    22.N.V.Mikhailov, V.I.Maiboroda, S.S.Nikolaeva, Vysokomol.Soedin., 2, 989, (1960).
    23.T.M.Frunze, V.V.Korshak, V.V.Kurashev, P.A.Alievskii, Vysokomol.Soedin., 1, 1795, (1959).
    24.P.W.Morgan, S.L.Kwolek, J.Polym.Sci., 62, 33, (1962).
    25.E.L.Wittbecker, P.W.Morgan, J.Polymer Sci., 40, 289, (1959).
    26.P.W.Morgan, S.L.Kwolek, J.Polymer Sci., 40, 299, (1959).
    27.R.G.Beaman, P.W.Morgan,C.R.Kroller, E.L.Wittbeaker, E.E.Magat, J.Polymer Sci., 40,329, (1959).
    28.J.R.Schaetgen, F.H.Koonntz, R.F.Tietz, J.Polmer Sci.,40, 377, (1959).
    29.D.J.Lyman, S.L.Jung, J.Polymer Sci., 40, 407, (1959).
    30.H.Sekiguchi, B.Coutin, Polyamides, Handbook of Polymer Synthesis Part A., Marcel Dekker, New York, 849, (1992).
    31.C.P.Yang, W.T.Chen, Makromol.Chem.,194, 1959, (1993).
    32.N.Yamazaki, F.Higashi, F.Higashi, J.Polym Sci.Polym Chem.Ed.,12, 2149, (1947).
    33.N.Yamazaki, M.Matsumoto, F.Higashi, J.Polym. Sci, Polym.Chem.Ed., 13, 1373, (1975).
    34.C.P.Yang, Y.Y.Yen, J.Polym, Sci, Polym.Chem., 30, 1885, (1992).
    35.P.J.Perry, B.D.Wilson, Macromolecules, 26, 1503, (1993).
    36.Y.Takahashi, M.Iijima, Y.Oishi, M.A.Kakimoto, Y.Imai, Macromolecules, 24, 3543, (1991).
    37.Y.Oshi, M.A.Kakimoto, Y.Imai, Macromolecules, 21, 547, (1988).
    38.H.K.Reimschuessel, J.Polym.Sci, Macro.Rev., 12, 65, (1977).
    39.S.K.Gupta, D.Kunzru, A,Kumar, K.Agarwal, J.Appl.Polym.Sci., 28, 1626, (1983).
    40.H.J.Jeong, M.A.Kakimoto, Y.Imai, J,Polym.Sci., Polym.Chem, 29, 767, (1991).
    41.A.L.CimeciogLu, R.A.Weiss, J. Polym.Sci, Polym.Chem., 30, 1051, (1992).
    42.C.P.Yang, J.H.Lin, J.Poym.Sci.Polym.Chem., 32, 423, (1994).
    43.C.P.Yang, W.T.Chen, Makromol.Chem.,194, 1595, (1993).
    44.V.V.Korshak, A.L.Rusanov, D.S.Tugishi, G.M.Cherkasova, Macromolecules, 5, 807, (1972).
    45.F.Akutsu, T.Kataoka, K.Naruchi, M.Miura, K.Nagakubo, Polymer, 28, 1787, (1987).
    46.Y.Imai, N.N.Malder, M. Kakimoto, J.Polym.Sci.,Polym.Chem.Ed.,23,797, (1985).
    47.J.Y.Jadhav, J.Preston, W.R.Wrigbaum, J.Polym.Sci, Polym.Chem.Ed., 23, 1175, (1989).
    48.Y.Delaviz, A.Gungor, J.E.McGrath, H.W.Gibson, Polymer, 34, 210, (1993).
    49.M.Takayznagi, T.Katayose, J.Polym.Sci., Polym.Chem.Ed., 19,1133, (1981).
    50.W.F.Hale, A.G.Farnham, R.N.Johnson, R.A.Clendining, J.Polym.Sci Polym.Chem.Ed.,5, 2399, (1967).
    51.B.F.Malichenko, V.V.Sherikova, L.C.Chervgatsova, A.A.Kachan, G.I.Motryuk, Vysokomol.Soedin.Ser.B, 14, 423.
    52.S.V.Vinogradova, Ya.S.Vygodskii, Russ.Chem.Rev., 42, 551, (1974).
    53.S.V.Vinogradova, V.V.Korshak, J.Macromol.Sci.Cehm., 11, 45, (1974).
    54.E.R. Hensema, M.E.R.Sena, M.E.H.V.Mulder, C.A.Smolders, J.polym. Sci., Part A:Polym.Chem.32, 527 (1994).
    55.G.Maglio, R.Palumbo, M.Tortora, M.Trifuoggi, G.Varricchio ,Polymer 25, 6407 (1998).
    56.S.-H.Hsiao, C.-H.Yu, J.Polym.Sci., Part A:Polym.Chem.36, 1847 (1998).
    57.S.-H.Hsiao, L.-R.Dai, M.-S.He, J.Polym.Sci., Part A:Polym.Chem. 37,1169 (1999).
    58.S.-H.Hsiao, J.-H.Chiou, J.Polym.Sci., Part A:Polym.Chem.39 ,2271 (2001).
    59.S.-H.Hsiao, M.-S.He, Macromol.Chem.Phys.202, 3579 (2001).
    60.S.-H.Hsiao, G.-S.Liou, Polym.J.34, 917 (2002).
    61. Mehdipour-Ataei S, Arabi H, Bahri-Laleh N. Eur Polym J.42,2343 (2006).
    62. 陳文祥、李名洋等人,高性能的工程塑膠,科學發展,2002年8月356期

    QR CODE