簡易檢索 / 詳目顯示

研究生: 陳偉銘
Wei-Ming Chen
論文名稱: 以PEBA搭配SMA相容化劑增韌改質Nylon 6之聚摻合研究
Study of the modification of Nylon 6 by toughening with PEBA and compatibilizing with SMA
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 楊銘乾
Ming-Chien Yang
戴子安
Chi-An Dai
洪信國
Shinn-Gwo Hong
吳昌謀
Chang-Mou Wu
葉樹開
Shu-Kai Yeh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 98
中文關鍵詞: 耐隆6聚醚聚醯胺嵌段共聚物苯乙烯馬來酸酐共聚物機械性質流變熱行為
外文關鍵詞: Nylon 6, PEBA, SMA, mechanical properties, rheology, thermal behavior
相關次數: 點閱:306下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在改善耐隆6(Nylon 6)在溫度0°C以下的耐衝擊特性,故將耐隆6以聚醚聚醯胺嵌段共聚物(PEBA;Pebax® Rnew)搭配苯乙烯馬來酸酐共聚物(SMA)相容化劑來進行相容化摻合增韌改質。所有的Nylon 6/SMA/PEBA聚摻物皆經由同軸雙螺桿押出機進行熔融混練加工製備而成。在本研究中分有兩組系列的Nylon 6/SMA/PEBA聚摻物來進行探討。其中ATN系列是研究不同類型的PEBA在固定含量(15wt%)下對Nylon 6/SMA/PEBA聚摻物的特性影響,另一HTN系列則是探討不同含量的PEBA40R53對Nylon 6/SMA/PEBA聚摻物的特性影響。再者亦探討PEBA中的軟鏈段PTMO含量對聚摻物增韌特性之影響,而所製備的聚摻物耐衝擊特性則在23°C及-20°C下來測得,其耐衝擊強度隨著PTMO含量的增加而增加,另拉伸及彎曲強度則隨著PTMO含量的增加而減少。從掃描式電子顯微鏡(SEM)照片中可以顯示PEBA次微米粒子分散良好地嵌入在Nylon 6基材上。然而由TGA的結果顯示這些聚摻物的熱穩定性並未有顯著的變化。此外,從流變測量的試驗結果揭示這些聚摻物皆呈現剪切稀化的行為,而相較Nylon 6 /PEBA聚摻物,其Nylon 6/SMA/PEBA聚摻物在添加1 wt%的SMA下,其表觀黏度的增加及熔融流動指數(MFI)的減少現象可以證實SMA可以增進Nylon 6與PEBA間的相容化性,另聚摻物的黏度隨著PEBA含量與溫度的增加而減小,並且熔融流動的活化能(Ea)則隨著剪切速率的增加而下降,同時較高的PTMO含量可導致較高的儲存模數(G’)並降低損失模數(G”)及複變黏度(η*)。因此Nylon 6/SMA/PEBA聚摻物中其PEBA的軟鏈段PTMO含量越高則對韌性的改善也越多。再者由DSC的結果顯示,Nylon 6的玻璃轉移溫度(Tg)會隨著PEBA含量的增加而下降,且PEBA之存在會影響到Nylon 6的結晶特性及γ晶相與 α晶相間之相對比例,而Nylon 6的結晶速率也會受到降溫速率與添加的PEBA含量所影響。此外,根據Avrami方程式計算出所有的Avrami指數(n)皆介於2到3之間,可以證實Nylon 6在Nylon 6/SMA/PEBA聚摻物中的結晶方式為擴散控制之結晶。


    The purpose of this study is to improve the impact property of Nylon 6 at temperature below 0°C. In this study, Nylon 6 was toughened by blending with polyether block amide (PEBA; Pebax® Rnew) and compatibilized with poly(styrene-co-maleic anhydride) (SMA). All the blends were prepared via direct melt compounding using a co-rotating twin screw extruder. Two series of Nylon 6/SMA/PEBA blends were investigated in this study. The ATN series is to investigate the effect of polytetramethylene oxide (PTMO) content in PEBA on the properties of blends at a fixed content of 15 wt%. The HTN series is to study the effect of content of PEBA 40R53 on the properties of blends. The effect of the content of PTMO (soft segment) of PEBA on the toughening properties of blends was also investigated using the ATN series. The impact properties of the resulting blends were measured at 23°C and -20°C. With the increase of PTMO content, the impact strength increased, whereas the tensile and flexural properties decreased. Scanning electron microscopy (SEM) images revealed that the PEBA submicron particles were well-dispersed and embedded in the matrix (Nylon 6). The TGA results showed that the thermal stability of these blends was not affected significantly. In addition, the results of rheological measurements revealed that these blends exhibited shear-thinning behavior. Comparing with Nylon6/PEBA blends, the addition of 1 wt% of SMA increased the apparent viscosity and decreased the melt flow index (MFI), indicating that SMA can enhance the compatibility between Nylon6 and PEBA. In addition, the viscosity of the blends decreased with increasing PEBA content and temperature. The activation energy (Ea) of the melt flow decreased as the shear rate increased. Furthermore, higher PTMO content led to higher storage modulus (G’), lower loss modulus (G”) and complex viscosity (η*). The higher PTMO content in PEBA of Nylon 6/SMA/PEBA blends also improved the toughness. Moreover, the results of DSC showed that the glass transition temperature (Tg) of Nylon 6 decreased with the increase of PEBA content and the presence of PEBA affected the crystallization characteristics and the relative ratio of γ and α crystalline phases of Nylon 6. The crystallization rate of Nylon 6 was also affected by the cooling rate and the PEBA content. Moreover, based on the Avrami equation, all values of Avrami exponent (n) were between 2 and 3, indicating that the crystallization of Nylon 6 in the Nylon 6/SMA/PEBA blends was a diffusion-controlled crystallization.

    摘要 I Abstract III 誌謝 V Table of Contents VI Nomenclatures IX List of Figures XI List of Tables XIII Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Literature Review 3 1.3 Research objective 5 1.4 Research outline 6 Chapter 2 Experiment 8 2.1 Materials 8 2.2 Polymer melt-blending 10 2.3 Mechanical measurement 13 2.4 SEM observation 15 2.5 Thermogravimetric analyses 15 2.6 Rheological measurement 16 2.6.1 Rotational rheology (Parallel Plate System) 16 2.6.2 Capillary rheology 16 2.6.3 Melt flow Index (MFI) 17 2.7 DSC analyses 18 2.8 X-ray diffraction (XRD) analyses 19 Chapter 3 Effect of type of PEBA with fixed content on the properties of Nylon 6/SMA/PEBA blends 21 3.1 Introduction 21 3.2 Results and discussion 21 3.2.1 Mechanical properties 21 3.2.1.1 Impact Properties 22 3.2.1.2 Tensile Properties 24 3.2.1.3 Flexural Properties 25 3.2.2 Morphology investigation 26 3.2.3 Thermal stability 28 3.2.4 Rheological properties 33 3.3 Summary 39 Chapter 4 Effect of the content of PEBA 40R53 on the properties of Nylon 6/SMA/PEBA blends 40 4.1 Introduction 40 4.2 Results and discussion 40 4.2.1 Mechanical properties 40 4.2.1.1 Impact Properties 41 4.2.1.2 Tensile Properties 44 4.2.1.3 Flexural Properties 46 4.2.2 Morphology investigation 46 4.2.3 Thermal stability 49 4.2.4 Rheological properties 53 4.2.4.1 The effect of SMA and PEBA content on the MFI of the blends 53 4.2.4.2 The apparent viscosities of the blends 55 4.2.4.3 The effect of temperature on the apparent viscosity of the blends 59 4.2.4.4 The activation energies of the blends 60 4.2.5 Crystallization characteristics from DSC 62 4.2.6 X-ray diffraction (XRD) of the blends 82 4.3 Summary 83 Chapter 5 Conclusions 86 Chapter 6 References 89

    1. Yu Z, Ou Y, Qi Z, Hu G (1998) Toughening of nylon 6 with a maleated core‐shell impact modifier. J Polym Sci B: Polym Phys 36:1987-1994
    2. Li QF, Kim DF, Wu DZ, Lu K, Jin RG (2001) Effect of maleic anhydride graft ratio on mechanical properties and morphology on nylon 11/ethylene‐octene copolymer blends. Polym Eng Sci 41:2155-2161
    3. Wang X, Feng W, Li H, Jin R (2003) Compatibilization and toughening of poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 alloy with poly(ethylene 1‐octene): Mechanical properties, morphology, and rheology. J Appl Polym Sci 88:3110-3116
    4. Huang JJ, Paul DR (2006) Comparison of fracture behavior of nylon 6 versus an amorphous polyamide toughened with maleated poly(ethylene-1-octene) elastomers. Polymer 47: 3505-3519
    5. Kim JG, Lee J, Son Y (2014) Toughening of nylon 6 with a ethylene–octene copolymer grafted with maleic anhydride and styrene. Mater Lett 126:43-47
    6. Yu ZZ, Ke YC, Ou YC, Hu GH (2000) Impact fracture morphology of nylon 6 toughened with a maleated polyethylene–octene elastomer. J Appl Polym Sci 76:1285-1295
    7. Premphet-Sirisinha K, Chalearmthitipa S (2003) Study on composition and characteristics of maleated ethylene‐octene copolymer prepared by reactive extrusion on the morphology and properties of polyamide 6/ethylene‐octene copolymer blends. Polym Eng Sci 43:317-328
    8. Borggreve RJM, Gaymans RJ, Schuijer J, Housz JFI (1987) Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size. Polymer 28:1489-1496
    9. Wu D, Wang X, Jin R (2004) Toughening of poly(2,6-dimethyl-1,4-phenylene oxide)/nylon 6 alloys with functionalized elastomers via reactive compatibilization: morphology, mechanical properties, and rheology. Eur Polym J 40:1223-1232
    10. Okada O, Keskkula H, Paul DR (2004) Fracture toughness of nylon‐6 blends with maleated rubbers. J Polym Sci B: Polym Phys 42:1739-1758
    11. Wang BB, Wei LX, Hu GS (2008) Synergetic toughness and morphology of poly(propylene)/nylon 11/maleated ethylene‐propylene diene copolymer blends. J Appl Polym Sci 110:1344-1350
    12. Wang Y, Wang W, Peng F, Liu M, Zhao Q, Fu PF (2009) Morphology of nylon 1212 toughened with a maleated EPDM rubber. Polym Int 58:190-197
    13. Kumar S, Ramanaiah BV, Maiti SN (2007) Effect of Maleation on Polyamide‐6/EPDM‐G‐MAH Blends. Soft Mater 4:85-100
    14. Gonzhlez-Montiel A, Keskkula H, Paul DR (1995) Impact-modified nylon 6/polypropylene blends: 3. Deformation mechanisms. Polymer 36:4621-4637
    15. Lu M, Keskkula H, Paul DR (1995) Toughening of nylon 6 with grafted rubber impact modifiers. J Appl Polym Sci 58:1175-1188
    16. Corté L, Beaume F, Leibler L (2005) Crystalline organization and toughening: example of polyamide-12. Polymer 46:2748-2757
    17. Ahn Y, Paul DR (2006) Rubber toughening of nylon 6 nanocomposites. Polymer 47:2830-2838
    18. Tanrattanakul V, Sungthong N, Raksa P (2008) Rubber toughening of nylon 6 with epoxidized natural rubber. Polym Test 27: 794-800
    19. Carone Jr. E, Kopacak U, Goncalves MC, Nunes SP (2000) In situ compatibilization of polyamide 6/natural rubber blends with maleic anhydride. Polymer 41:5929-5935
    20. Banerjee SS, Bhowmick AK (2013) Novel nanostructured polyamide 6/fluoroelastomer thermoplastic elastomeric blends: Influence of interaction and morphology on physical properties. Polymer 54: 6561-6571
    21. Kayano Y, Keskkula H, Paul DR (1997) Evaluation of the fracture behaviour of nylon 6/SEBS-g-MA blends. Polymer 38:1885-1902
    22. Wu D, Wang X, Jin R (2006) Effect of nylon 6 on fracture behavior and morphology of tough blends of poly(2, 6‐dimethyl‐1,4‐phenylene oxide) and maleated styrene‐ethylene‐butadiene‐styrene block copolymer. J Appl Polym Sci 99:3336-3343
    23. Xie T, Yang G (2004) Effects of maleated styrene–(ethylene‐co‐butene)–styrene on compatibilization and properties of nylon‐12,12/nylon‐6 blends. J Appl Polym Sci 93:1446-1453
    24. Huang JJ, Keskkula H, Paul DR (2006) Comparison of the toughening behavior of nylon 6 versus an amorphous polyamide using various maleated elastomers. Polymer 47:639–651
    25. Yu H, Zhang Y, Ren W (2009) Effect of EVM/EVA‐g‐MAH ratio on the structure and properties of nylon 1010 blends. J Polym Sci B: Polym Phys 47:877–887
    26. Liu H, Xie T, Hou L, Ou Y, Yang G (2006) Toughening and compatibilization of polypropylene/polyamide‐6 blends with a maleated–grafted ethylene‐co‐vinyl acetate. J Appl Polym Sci 99:3300-3307
    27. Yu H, Zhang Y, Ren W, Hoch M, Guo S (2011) Comparison of the toughening effects of different elastomers on nylon 1010. J Appl Polym Sci 121:3340-3346
    28. Xu C, Ma J, Li G, Wang N, Zhang Q, Grami ME, Qu X (2017) Enhanced toughness for polyamide 6 with a core-shell structured polyacrylic modifier. J Polym Res 24:147
    29. Utracki LA (2003) Polymer Blends Handbook. Kluwer Academic Publishers, Dordrecht
    30. Newman S, Paul DR (1978) Polymer Blends: Volumes I and II. Academic Press, New York
    31. Folkes MJ, Hope PS (1993) Polymer Blends and Alloys, Springer NetherlandsF
    32. Isayev AI (2011) Encyclopedia of Polymer Blends, Volume 2: Processing. Wiley-VCH
    33. Isayev AI (2016) Encyclopedia of Polymer Blends, Volume 3: Structure. Wiley-VCH
    34. Chiang CR, Chang FC (1997) Polymer blends of polyamide-6 (PA6) and poly(phenylene oxide) (PPO) compatibilized by styrene-maleic anhydride (SMA) copolymer. Polymer 38(19): 4807-4817
    35. Qin SH, Yu J, Zheng Q, He M, Zhu H (2008) The effect of blending sequence on phase morphology of Nylon 6/ABS/SMA blends . Chinese Journal of Polymer Science 26(1): 73-80
    36. Kim BK, Park SJ (1991) Reactive melt blends of nylon with poly(styrene‐co‐maleic anhydride). J Appl Polym Sci 43:357-363
    37. Zhang K, Nagarajan V, Misra M, Mohanty AK (2014) Supertoughened Renewable PLA Reactive Multiphase Blends System: Phase Morphology and Performance. ACS Appl Mater Interfaces 6(15):12436-12448
    38. Borah JS, Chaki TK (2012) Effect of organo-montmorillonite addition on the dynamic and capillary rheology of LLDPE/EMA blends. Applied Clay Science 59-60:42-49
    39. Hou C, Li J, Wang Y, Chen Y, Wang L (1996) Rheological behavior of polyphenylene sulfide/polyamide-66 blends. Chinese Journal of Polymer Science 14:225-232
    40. Hu GS, Wang BB, Gao FZ (2006) Investigation on the rheological behavior of nylon 6/11. Materials Science and Engineering A 426:263-265
    41. Chen WM, Yang MC, Hong SG, Hsieh YS (2017) Effect of poly(styrene-co-maleic anhydride) on physical properties and crystalline behavior of nylon-6/PEBA blends. J Polym Res 24:40
    42. Fornes TD, Paul DR (2003) Crystallization behavior of nylon 6 nanocomposites. Polymer 44:3945-3961
    43. Rinawa K, Maiti SN, Sonnier R, Lopez Cuesta JM (2015) Non-isothermal crystallization kinetics and thermal behaviour of PA12/SEBS-g-MA blends. Bull Mater Sci 38:1315-1327
    44. Wu S (1985) Phase structure and adhesion in polymer blends: A criterion for rubber toughening. Polymer 26:1855
    45. Angola JC, Fujita Y, Sakai T, Inoue T (1988) Compatibilizer‐aided toughening in polymer blends consisting of brittle polymer particles dispersed in a ductile polymer matrix. J Polym Sci B: Polym Phys 26:807-816
    46. Margolin A, Wu S (1988) Percolation model for brittle-tough transition in nylon/rubber blends. Polymer 29:2170
    47. Wu S, Margolin A (1990) Reply to comments. Polymer 31:972-974
    48. Sjooerdsma SD (1989) The Tough-Brittle Transition in Rubber-Modified Polymers. Polym Commun 30:106
    49. Chen WM, Yang MC, Hong SG, Hsieh YS (2019) Effect of soft segment content of Pebax® Rnew on the properties of Nylon-6/SMA/PEBA blends. J Polym Res 26:25
    50. Nouparvar H, Hassan A, Mohamad Z, Wahit MU (2014) Epoxidized natural rubber-50 toughened polyamide 6 nanocomposites: The effect of epoxidized natural rubber-50 contents on morphological characterization, mechanical and thermal properties. J Elastom Plast 46:269-283
    51. Navid N, Mat UW, Azman H, Shaya M (2011) Mechanical and Thermal Properties of Polyamide 6 Nanocomposite Toughened with Epoxidised Natural Rubber-25. Key Engineering Materials 471-472:518-523
    52. Ogunsona EO, Misra M, Mohanty AK (2017) Influence of epoxidized natural rubber on the phase structure and toughening behavior of biocarbon reinforced nylon 6 biocomposites. RSC Adv 7:8727-8739
    53. Thanakkasaranee S, Kim D, Seo J (2018) Preparation and Characterization of Poly(ether-block-amide)/Polyethylene Glycol Composite Films with Temperature-Dependent Permeation. Polymers 10:225
    54. Lehrle RS, Parsons IW, Rollinson M (2000) Thermal degradation mechanisms of nylon 6 deduced from kinetic studies by pyrolysis-g.c. Polym Degrad Stabil 67:21-33
    55. Todros S, Natali AN, Piga M, Giffin GA, Pace G, Noto VD (2013) Interplay between chemical structure and ageing on mechanical and electric relaxations in poly(ether-block-amide)s. Polym Degrad Stabil 98:1126-1137
    56. Macosko CW (1994) Rheology-principles, measurements, and applications. Wiley-VCH
    57. Pang H, Liao B, Huang Y, Cong G (2002) Studies on the blends of CO2 copolymer. IV. Natural rubber/poly(propylene carbonate) systems. J Appl Polym Sci 86:2140-2144
    58. Li X, Ai X, Pan H, Yang J, Gao G, Zhang H, Yang H, Dong L (2018) The morphological, mechanical, rheological, and thermal properties of PLA/PBAT blown films with chain extender. Polym Advan Technol 29:1706-1717
    59. Yu ZZ, Ou YC, Qi ZN, Hu GH (1998) Toughening of nylon 6 with a maleated core-shell impact modifier. Journal of Polymer Science Part B: Polymer Physics 36:1987–1994
    60. Peng J, Qiao J, Zhang S, Wei G (2002) A novel impact modifier for nylon 6. Macromolecular Materials and Engineering 287:867-870
    61. Wagener R, Reisinger TJG (2003) A Rheological Method to Compare the Degree of Exfoliation of Nanocomposites. Polymer 44:7513-7518
    62. Wang M, Wang W, Liu T, Zhang W (2008) Melt rheological properties of nylon 6/multi-walled carbon nanotube composites. Composites Science and Technology 68:2498-2502
    63. Gu SY, Zhang K, Ren J, Zhan H (2008) Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends. Carbohydrate Polymers 74:79-85
    64. Liang JZ, Chen CY, Zou SY, Tsui CP, Tang CY, Zhang SD (2015) Melt flow behavior of polypropylene composites filled with multi-walled carbon nanotubes during extrusion. Polymer Testing 45:41-46
    65. Hamad K, Kaseem M, Deri F (2011) Melt Rheology of Poly(Lactic Acid)/Low Density Polyethylene Polymer Blends. Advances in Chemical Engineering and Science 1:208-214
    66. Dasgupta S, Hammond WB, Goddard WA (1996) Crystal Structures and Properties of Nylon Polymers from Theory. J Am Chem Soc 118:12291-12301
    67. Liu Y, Cui L, Guan F, Gao Y, Hedin NE, Zhu L, Fong H (2007) Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon-6 Nanofibers. Macromolecules 40(17):6283-6290
    68. Katoh Y, Okamoto M (2009) Crystallization controlled by layered silicates in nylon 6–clay nano-composite. Polymer 50:4718-4726
    69. Hsieh YS (2016) Master's thesis, Department of Chemical Engineering and Materials Science, Yuan-Ze University.
    70. Ren X, Wu G, Zhang X (2011) 2011 2nd International Conference on Chemistry and Chemical Engineering, IPCBEE 14:125-129
    71. Liu T, Tjiu WC, He C, Na SS, Chung TS (2004) A processing‐induced clay dispersion and its effect on the structure and properties of polyamide 6. Polym Int 53:392-399
    72. Zapata-Espinosa A, Medellín-Rodríguez FJ, Stribeck N, Almendarez-Camarillo A, Vega-Díaz S, Hsiao BS, Chu B (2005) Complex isothermal crystallization and melting behavior of nylon 6 nanoclay hybrids. Macromolecules 38: 4246-4253
    73. Illers KH (1978) Polymorphie, kristallinität und schmelzwärme von poly(ε‐caprolactam), 2. Kalorimetrische untersuchungen. Makromol Chem. 179(2):497-507
    74. Khanna Y P, Kuhn WP (1997) Measurement of crystalline index in nylons by DSC: Complexities and recommendations. J Polym Sci Part B: Polym Phys 35: 2219-2231
    75. Wunderlich B. Macromolecular physics. Crystal melting. vol. 3. New York: Academic Press; 1980.
    76. Gogolewski S, Gasiorek M, Czerniawska K, Pennings AJ (1982) Annealing of melt-crystallized nylon 6. Colloid Polym Sci 260(9): 859-863
    77. Starkweather Jr. HW, Zoller P, Jones GA (1984) The heat of fusion of 66 nylon. J Polym Sci, Polym Phys Ed 22(9): 1615-1621
    78. Lam RSH, Rogers MA (2011) Experimental validation of the modified Avrami model for non-isothermal crystallization conditions. Cryst Eng Comm 13:866-875

    無法下載圖示 全文公開日期 2024/05/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE