簡易檢索 / 詳目顯示

研究生: 方晨譽
Chen-Yu Fang
論文名稱: 批次發泡過程中的泡體成長現象模擬
Simulation of bubble growth phenomenon by Batch Foaming
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 林子仁
王鎮杰
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 141
中文關鍵詞: 泡體成長流變參數有限差分法敏感性統御方程式
外文關鍵詞: Bubble growth, Rheological Parameters, Finite difference method, Sensitivity analysis, Governing equation
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 泡孔尺寸對於高分子發泡材料的性質影響較深,控制泡孔尺寸的預測可以減少需要試誤法的實驗條件,本研究著重模擬精確的高分子發泡行為(PS/CO2)中的泡體成長現象,運用文獻精準量測到的物理參數(表面張力、零剪切黏度、擴散係數、亨利常數等),比對本實驗室利用高分子發泡視覺化設備拍攝之泡體成長數據,比較本研究的泡體成長模型的精確性,確認本研究在泡體成長行為模擬的可靠性,其結果建立了本實驗室對泡體成長模擬的初步研究。
    也比對文獻中哪些物理參數對泡體成長現象是敏感的,代表那些物理參數對泡體成長行為是極重要的因子,驗證本研究對文獻結果有一定程度的還原性。


    The size of the bubble is the critical factor that affects polymer foam's properties.
    Controlling the prediction of bubble size can reduce the experimental conditions that
    require a trial-and-error method. The present study focuses on the simulation of precise polymer foaming behaviors (PS/CO2) in the bubble growth phenomenon and the use of the literature to accurately measure physical parameters (surface tension, zero-shear viscosity, diffusion coefficient, Henry's constant, etc.), compared with this laboratory using polymer foaming visualization equipment to capture bubble growth data to confirm the accuracy of this study in the bubble growth model. We compare the accuracy of our bubble growth model with the bubble growth data captured by our laboratory using the polymer foaming visualization equipment and confirm the reliability of our study in simulating the bubble growth behavior. The results establish the preliminary study of bubble growth simulation in our laboratory.
    The results also compare which physical parameters in the literature are sensitive to
    the bubble growth phenomenon, and represent those physical parameters that are critical
    factors for bubble growth behavior, verifying that the present study has a certain degree of reversibility to the literature results.

    摘要 ................................... i Abstract ............................. ii 誌謝 ................................. iii 目錄 ................................. iv 圖目錄 ........................... viii 表目錄 ............................. xi 第一章 緒論 .................... 1 第二章 文獻回顧 .......................... 3 2.1 高分子發泡 .......................................... 3 2.2 高分子加工 ... ....................................... 4 2.2.1 批次發泡 ...................................5 2.2.2 押出發泡 ...................................5 2.2.3 射出發泡 ...................................6 2.3 古典成核理論 ....................7 2.3.1 古典同相成核 ........................................ 8 2.3.1.1 同相成核自由能 ......................... 8 2.3.1.2 同相成核成核率 ....................... 10 2.3.2 古典異相成核 ....................................... 11 2.3.2.1 異相成核自由能 ....................... 12 2.3.2.2 異相成核成核率 ....................... 12 2.3.3 擬穩態古典成核 .................................. 13 2.4 泡體成長模型 .................................... 14 2.4.1 單顆氣泡成長模型(Single Bubble Growth Model) ............................ 14 2.4.1.1 連續方程式(Equation of continuity)......................................... 15 2.4.1.2 動量平衡方程式(Equation of motion) ..................................... 16 2.4.1.3 質量守恆與擴散方程式 (Equation of Mass Balance) ............ 19 2.4.1.4 多項式濃度分布(Polynomial concentration profile) ................ 20 2.4.2 陣列同心球泡體模型(Cell Model) ....................... 29 2.4.2.1 連續方程式(Equation of continuity)......................................... 31 2.4.2.2 動量平衡方程式(Equation of motion) ..................................... 32 2.4.2.3 質量守恆與擴散方程式(Equation of Mass Balance and Diffusion) ......................................................33 2.4.2.4 完整濃度分布(Completely concentration profile) ................... 33 2.5 泡體成長重要物理參數 ................................. 38 2.5.1 零剪切黏度(Zero Shear Viscosity) ....................... 38 2.5.2 表面張力 (Surface tension) ................. 40 2.5.3 弛豫時間(Relaxation time) .................. 42 2.5.4 擴散係數(Diffusion coefficient) .......... 43 2.5.5 亨利常數(Henry’s constant) ................ 44 第三章 實驗步驟與計算方法 ...................................... 46 3.1 模擬流程 ................................... 46 3.2 計算流程 ................................... 46 3.2.1 網格建立 .............................................. 46 3.2.2 物理參數選用 ...................................... 47 3.2.3 起始條件 .............................................. 47 3.2.4 猜測泡體半徑 ...................................... 48 3.2.5 計算內應力 .......................................... 48 3.2.6 泡體壓力(1) ......................................... 49 3.2.7 濃度分布 .............................................. 49 3.2.8 泡體壓力(2) ......................................... 50 3.2.9 誤差 ... ...................................... 50 第四章 結果與討論 ..... .................................... 52 4.1 差分方程式之建立 ......................................... 52 4.2 差分方程式之穩定性分析 ............................. 57 4.2.1 猜測泡體半徑ODE 之穩定性 ............ 57 4.2.2 計算內應力ODE 之穩定性 ................ 58 4.2.3 擴散方程式穩定性 .............................. 58 4.3 與先前研究者之模型比較 ............................. 60 4.3.1 洩壓曲線 .............................................. 60 4.3.2 泡體成長曲線 ...................................... 61 4.3.3 敏感性分析 .......................................... 63 4.4 與發泡視覺化之實驗比較 ............................. 78 第五章 結論 .................. 87 參考文獻 ........................ 88 附錄 A 有限差分法的形式 ......................................... 97 A.1 有限差分法的推導 ........................................ 99 A.2 空間有限差分法形式(Spatial finite different method formula) .................. 102 A.3 時間有限差分法形式(Temporal finite different method formula) .............. 105 附錄 B 截斷誤差、一致性與數值穩定性 ............... 108 B.1 截斷誤差(truncation error) ........................... 108 B.2 一致性(Consistency) .................................... 109 B.3 穩定性(Stability) ........................................... 110 B.4 穩定性簡易判斷法 ....................................... 110 B.5 時間疊代法的穩定性推導 ........................... 112 B.6 馮諾依曼穩定性分析 ................................... 116 B.7 離散擴散方程式的穩定性推導 ................... 117 附錄 C Runge-Kutta Method ...................................... 120 附錄 D 均勻網格與非均勻網格之探討 ................... 124 附錄 E 辛普森積分法 ...................................126

    Polymer Foam Market Research Report Information by Form (Flexible Foam
    and Rigid Foam), Product [Polyurethane (PU), Polystyrene (PS), Polyethylene
    (PE), Polypropylene (PP), Polyvinyl Chloride (PVC) and Others], Application
    (Building and Construction, Automotive, Packaging, Furniture, Wind Turbine
    Blade, and Others), And By Region (North America, Europe, Asia-Pacific,
    And Rest Of The World) - Market Forecast Till 2030. Available from:
    https://www.marketresearchfuture.com/reports/polymer-foam-market-4964.
    2. Q. Guo, J. Wang, and C.B. Park. Visualization of PP foaming with nitrogen.
    in Annual Technical Conference – ANTEC 2006, Conference Proceedings vol
    5, p. 2736-2740.
    3. Q. Guo, Y. Mei, S.S.Y. Chang, J. Wang, and C.B. Park. Guo, Q., Mei, Y.,
    Chang, S., Wang, J. et al., "Cell Nucleation and Growth Study of PP Foaming
    with CO2 in a Batch-Simulation System," SAE Technical Paper 2006-01-0507,
    2006,
    4. United National Environment Programme Ozone Secretariat, Handbook for
    the Montreal Protocol. 2019
    5. N.J. Hossieny, M.R. Barzegari, M. Nofar, S.H. Mahmood, and C.B. Park,
    Crystallization of hard segment domains with the presence of butane for
    microcellular thermoplastic polyurethane foams. Polymer, 2014. 55(2): p.
    651-662.
    6. A. Wong, S.N. Leung, M.M. Hasan, and C.B. Park. The foamability of
    polypropylene copolymer blown with argon, nitrogen and helium. in
    Technical Papers, Regional Technical Conference - Society of Plastics
    Engineers 2008, 4, 2534–2538
    7. Y. Sato, T. Iketani, S. Takishima, and H. Masuoka, Solubility of
    hydrofluorocarbon (HFC-134a, HFC-152a) and hydrochlorofluorocarbon
    (HCFC-142b) blowing agents in polystyrene. Polymer Engineering and
    Science, 2000. 40(6): p. 1369-1375.
    8. C. Jacob and S.K. Dey, Inert Gases as Alternative Blowing Agents for
    Extruded Low-Density Polystyrene Foam. Journal of Cellular Plastics, 1995.
    31(1): p. 38-47.
    9. M. Nofar, B. Batı, E.B. Küçük, and A. Jalali, Effect of soft segment molecular
    weight on the microcellular foaming behavior of TPU using supercritical CO2.
    The Journal of Supercritical Fluids, 2020. 160: p. 104816.
    10. W. Lin, Y. Hikima, and M. Ohshima, Microcellular foam of styrene–
    isobutylene–styrene copolymer with N2 using polypropylene as a
    crystallization nucleating and shrinkage reducing agent. Journal of Applied
    Polymer Science, 2022. 139(40): p. e52977.
    11. J.S. Park, H.T. Kim, J.D. Kim, J.H. Kim, S.K. Kim, and J.M. Lee, Eco‐friendly
    blowing agent, HCFO‐1233zd, for the synthesis of polyurethane foam as
    cryogenic insulation. Journal of Applied Polymer Science, 2022. 139(2): p.
    51492.
    12. R.L. Heck, A review of commercially used chemical foaming agents for
    thermoplastic foams. Journal of Vinyl and Additive Technology, 1998. 4(2): p.
    113-116.
    13. H.A. Kharbas, J.D. McNulty, T. Ellingham, C. Thompson, M. Manitiu, G.
    Scholz, and L.-S. Turng, Comparative study of chemical and physical foaming
    methods for injection-molded thermoplastic polyurethane. Journal of Cellular
    Plastics, 2016. 53(4): p. 373-388.
    14. S.T. Lee and N.S. Ramesh, Polymeric foams: mechanisms and materials.
    Polymeric foams series. 2004, Boca Raton: CRC Press. 336 p.113.
    15. F.H.M. Swartjes, G.W.M. Peters, S. Rastogi, and H.E.H. Meijer, Stress
    Induced Crystallization in Elongational Flow. International Polymer
    Processing, 2003. 18(1): p. 53-66.
    16. A. Wong and C.B. Park, The effects of extensional stresses on the foamability
    of polystyrene-talc composites blown with carbon dioxide. Chemical
    Engineering Science, 2012. 75: p. 49-62.
    17. A. Longo, E. Di Maio, and M.L. Di Lorenzo, Heterogeneous Bubble
    Nucleation by Homogeneous Crystal Nuclei in Poly(l-Lactic Acid) Foaming.
    Macromolecular Chemistry and Physics, 2022. 223(4).
    18. 林宏修, 高壓發泡射出成型結合抽芯製程對聚苯乙烯發泡材料結構影響
    材料科學與工程系 碩士論文, 國立臺灣科技大學, 2021
    19. C.B. Park and L.K. Cheung, A study of cell nucleation in the extrusion of
    polypropylene foams. Polymer Engineering and Science, 1997. 37(1): p. 1-10.
    20. H.E. Naguib, C.B. Park, U. Panzer, and N. Reichelt, Strategies for achieving
    ultra low-density polypropylene foams. Polymer Engineering and Science,
    2002. 42(7): p. 1481-1492.
    21. S. Ishihara, Y. Hikima, and M. Ohshima, Preparation of open microcellular
    polylactic acid foams with a microfibrillar additive using coreback foam
    injection molding processes. Journal of Cellular Plastics, 2018. 54(4): p. 765-
    784.
    22. S.F. Jones, G.M. Evans, and K.P. Galvin, Bubble nucleation from gas cavities
    — a review. Advances in Colloid and Interface Science, 1999. 80(1): p. 27-50.
    23. S.N. Leung, C.B. Park, and H. Li, Numerical simulation of polymeric foaming
    processes using modified nucleation theory. Plastics, Rubber and Composites,
    2006. 35(3): p. 93-100.
    24. E.A. DiMarzio, J.H. Gibbs, P.D. Fleming, and I.C. Sanchez, Effects of
    Pressure on the Equilibrium Properties of Glass-Forming Polymers.
    Macromolecules, 1976,9(5): p. 763-771.
    25. L. Farkas, Keimbildungsgeschwindigkeit in übersättigten Dämpfen.
    Zeitschrift für Physikalische Chemie, 1927. 125U(1): p. 236-242.
    26. V. Kumar, Process synthesis for manufacturing microcellular thermoplastic
    parts: a case study in axiomatic design. Ph.D. dissertation Department of
    Mechanical Engineering, Massachusetts Institute of Technology, 1988
    27. S.N. Leung, Mechanisms of cell nucleation, growth, and coarsening in plastic
    foaming: Theory, simulation, and experiment. Department of Mechanical and
    Industrial Engineering, University of Toronto, 2009
    28. M. Blander and J.L. Katz, Bubble nucleation in liquids. AIChE Journal, 1975.
    21(5): p. 833-848.
    29. J.S. Colton and N.P. Suh, Nucleation of microcellular foam: Theory and
    practice. Polymer Engineering and Science, 1987. 27(7): p. 500-503.
    30. S.-T. Lee, Shear effects on thermoplastic foam nucleation. Polymer
    Engineering and Science, 1993. 33(7): p. 418-422.
    31. J.H. Han and C. D. Han, Bubble nucleation in polymeric liquids. II. theoretical
    considerations. Journal of Polymer Science Part B: Polymer Physics, 1990.
    28(5): p. 743-761.
    32. M. Blander, Bubble nucleation in liquids. Advances in Colloid and Interface
    Science, 1979. 10(1): p. 1-32.
    33. C.A. Ward and A.S. Tucker, Thermodynamic theory of diffusion−controlled
    bubble growth or dissolution and experimental examination of the predictions.
    Journal of Applied Physics, 1975. 46(1): p. 233-238.
    34. L.D. Landau and E.M. Lifshitz, Chpater IX - Solutions, in Statistical Physics
    (3rd Ed, edited by Landau, L.D. and E.M. Lifshitz, 1980, Pergamon. p. 263-
    304.
    35. S.N. Leung, A. Wong, Q. Guo, C.B. Park, and J.H. Zong, Change in the critical
    nucleation radius and its impact on cell stability during polymeric foaming
    processes. Chemical Engineering Science, 2009. 64(23): p. 4899-4907.
    36. V.I. Kalikmanov, Nucleation theory. Lecture notes in physics. 2013, Dordrecht;
    London: Springer. p.25 and p.253.
    37. J.M. Prausnitz, R.N. Lichtenthaler, and E.G.d. Azevedo, Molecular
    thermodynamics of fluid-phase equilibria. 3rd ed. Prentice-Hall international
    series in the physical and chemical engineering sciences. 1999, Upper Saddle
    River, N.J.: Prentice Hall PTR. xxiii, 860 p.419.
    38. J.S. Colton and N.P. Suh, The nucleation of microcellular thermoplastic foam
    with additives: Part I: Theoretical considerations. Polymer Engineering and
    Science, 1987. 27(7): p. 485-492.
    39. V. Kumar and J. Weller, Production of microcellular polycarbonate using
    carbon dioxide for bubble nucleation. Journal of engineering for industry,
    1994. 116(4): p. 413-420.
    40. C. Okolieocha, D. Raps, K. Subramaniam, and V. Altstädt, Microcellular to
    nanocellular polymer foams: Progress (2004–2015) and future directions – A
    review. European Polymer Journal, 2015. 73: p. 500-519.
    41. N.H. Fletcher, Size Effect in Heterogeneous Nucleation. The Journal of
    Chemical Physics, 1958. 29(3): p. 572-576.
    42. R. Cole, Boiling Nucleation†. Advances in Heat Transfer, 1974. 10: p. 85-166.
    43. T.J. Jarvis, M.D. Donohue, and J.L. Katz, Bubble nucleation mechanisms of
    liquid droplets superheated in other liquids. Journal of Colloid and Interface
    Science, 1975. 50(2): p. 359-368.
    44. G.R. Moore, Vaporization of superheated drops in liquids. AIChE Journal,
    1959. 5(4): p. 458-466.
    45. E.N. Harvey, D.K. Barnes, W.D. McElroy, A.H. Whiteley, D.C. Pease, and
    K.W. Cooper, Bubble formation in animals. I. Physical factors. Journal of
    Cellular and Comparative Physiology, 1944. 24(1): p. 1-22.
    46. E.N. Harvey, A.H. Whiteley, W.D. McElroy, D.C. Pease, and D.K. Barnes,
    Bubble formation in animals. II. Gas nuclei and their distribution in blood and
    tissues. Journal of Cellular and Comparative Physiology, 1944. 24(1): p. 23-
    34.
    47. E.N. Harvey, W.D. McElroy, and A.H. Whiteley, On Cavity Formation in
    Water. Journal of Applied Physics, 1947. 18(2): p. 162-172.
    48. L. Rayleigh, VIII. On the pressure developed in a liquid during the collapse of
    a spherical cavity. The London, Edinburgh, and Dublin Philosophical
    Magazine and Journal of Science, 1917. 34(200): p. 94-98.
    49. L.E. Scriven, On the dynamics of phase growth. Chemical Engineering
    Science, 1959. 10(1): p. 1-13.
    50. D.E. Rosner and M. Epstein, Effects of interface kinetics, capillarity and
    solute diffusion on bubble growth rates in highly supersaturated liquids.
    Chemical Engineering Science, 1972. 27(1): p. 69-88.
    51. A. Arefmanesh, Numerical and experimental study of bubble growth in highly
    viscous fluids. Ph.D. dissertation, Department of Mechanical Engineering,
    University of Delaware. 1991
    52. R. Elshereef, J. Vlachopoulos, and A. Elkamel, Comparison and analysis of
    bubble growth and foam formation models. Engineering Computations
    (Swansea, Wales), 2010. 27(3): p. 387-408.
    53. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport phenomena. 2nd ed.
    2002, New York: John Wiley. p.846-847.
    54. C.D. Han and H.J. Yoo, Studies on structural foam processing. IV. Bubble
    growth during mold filling. Polymer Engineering and Science, 1981. 21(9): p.
    518-533.
    55. K. Taki, Experimental and numerical studies on the effects of pressure release
    rate on number density of bubbles and bubble growth in a polymeric foaming
    process. Chemical Engineering Science, 2008. 63(14): p. 3643-3653.
    56. W.J. Bornhorst and G.N. Hatsopoulos, Bubble-Growth Calculation Without
    Neglect of Interfacial Discontinuities. Journal of Applied Mechanics, 1967.
    34(4): p. 847-853.
    57. P. Payvar, Mass transfer-controlled bubble growth during rapid decompression
    of a liquid. International Journal of Heat and Mass Transfer, 1987. 30(4): p.
    699-706.
    58. K. Taki and Y. Otsuki, (15) マクロスコピック系の CAE: 発泡成形の基
    礎と応用. Seikei-Kakou, 2006. 18(3): p. 205-218.
    59. Y. Ding, C. Vyas, O. Bakker, S. Hinduja, and P. Bartolo Modelling and
    Simulation of MuCell®: The Effect of Key Processing Parameters on Cell Size
    and Weight Reduction. Polymers, 2022. 14(19): 4215
    60. M. Amon and C.D. Denson, A study of the dynamics of foam growth: Analysis
    of the growth of closely spaced spherical bubbles. Polymer Engineering and
    Science, 1984. 24(13): p. 1026-1034.
    61. M. Fujino, T. Taniguchi, Y. Kawaguchi, and M. Ohshima, Mathematical
    models and numerical simulations of a thermally expandable microballoon for
    plastic foaming. Chemical Engineering Science, 2013. 104: p. 220-227.
    62. R.D. Patel, Bubble growth in a viscous Newtonian liquid. Chemical
    Engineering Science, 1980. 35(11): p. 2352-2356.
    63. S.N. Leung, C.B. Park, D. Xu, H. Li, and R.G. Fenton, Computer simulation
    of bubble-growth phenomena in foaming. Industrial and Engineering
    Chemistry Research, 2006. 45(23): p. 7823-7831.
    64. J.R. Street, The Rheology of Phase Growth in Elastic Liquids. Transactions of
    the Society of Rheology, 1968. 12(1): p. 103-131.
    65. A. Arefmanesh and S.G. Advani, Diffusion-induced growth of a gas bubble in
    a viscoelastic fluid. Rheologica Acta, 1991. 30(3): p. 274-283.
    66. H. Azimi and D. Jahani, The experimental and numerical relation between the
    solubility, diffusivity and bubble nucleation of supercritical CO2 in
    Polystyrene via visual observation apparatus. The Journal of Supercritical
    Fluids, 2018. 139: p. 30-37.
    67. M. Amon, Theoretical and experimental study of foam growth dynamics with
    application to structural foam molding, PhD. Dissertation, Department of
    Chemical Engineering, University of Delaware. 1982.
    68. S.L. Everitt, O.G. Harlen, H.J. Wilson, and D.J. Read, Bubble dynamics in
    viscoelastic fluids with application to reacting and non-reacting polymer
    foams. Journal of Non-Newtonian Fluid Mechanics, 2003. 114(2-3): p. 83-
    107.
    69. M. Lee, C.B. Park, and C. Tzoganakis, Measurements and modeling of
    PS/supercritical CO2 solution viscosities. Polymer Engineering and Science,
    1999. 39(1): p. 99-109.
    70. M.L. Williams, R.F. Landel, and J.D. Ferry, The Temperature Dependence of
    Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming
    Liquids. Journal of the American Chemical Society, 1955. 77(14): p. 3701-
    3707.
    71. A. Xue and C. Tzoganakis, Rheological Properties of
    Polystyrene/Supercritical CO2 Solutions from an Extrusion Slit Die. Journal
    of Polymer Engineering, 2003. 23(1): p. 1-22.
    72. H. Park, R.B. Thompson, N. Lanson, C. Tzoganakis, C.B. Park, and P. Chen,
    Effect of temperature and pressure on surface tension of polystyrene in
    supercritical carbon dioxide. Journal of Physical Chemistry B, 2007. 111(15):
    p. 3859-3868.
    73. J.J. Feng and C.A. Bertelo, Prediction of bubble growth and size distribution
    in polymer foaming based on a new heterogeneous nucleation model. Journal
    of Rheology, 2004. 48(2): p. 439-462.
    74. P.L. Durrill and R.G. Griskey, Diffusion and solution of gases in thermally
    softened or molten polymers: Part I. Development of technique and
    determination of data. AIChE Journal, 1966. 12(6): p. 1147-1151.
    75. E.J. Barlow and W.E. Langlois, Diffusion of Gas from a Liquid into an
    Expanding Bubble. IBM Journal of Research and Development, 1962. 6(3): p.
    329-337.
    76. H.S. Park, Surface tension measurement of polystyrenes in supercritical
    fluids., Ph.D. dissertation, Department of Chemical Engineering, University
    of Waterloo, 2007
    77. Y. Sato, M. Yurugi, K. Fujiwara, S. Takishima, and H. Masuoka, Solubilities
    of carbon dioxide and nitrogen in polystyrene under high temperature and
    pressure. Fluid Phase Equilibria, 1996. 125(1-2): p. 129-138.
    78. Y. Sato, T. Takikawa, S. Takishima, and H. Masuoka, Solubilities and
    diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene.
    The Journal of Supercritical Fluids, 2001. 19(2): p. 187-198.
    79. S. Areerat, E. Funami, Y. Hayata, D. Nakagawa, and M. Ohshima,
    Measurement and prediction of diffusion coefficients of supercritical CO2 in
    molten polymers. Polymer Engineering and Science, 2004. 44(10): p. 1915-
    1924.
    80. R.B. Bird, R.C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids,
    Volume 1: Fluid Mechanics. 2nd ed. Vol. 1. 1987, New York: Wiley. p.342-
    369.
    81. X.Y. Hu and B.C. Khoo, An interface interaction method for compressible
    multifluids. Journal of Computational Physics, 2004. 198(1): p. 35-64.
    82. P. Otto, L. De Lorenzis, and J.F. Unger, A regularized model for impact in
    explicit dynamics applied to the split Hopkinson pressure bar. Computational
    Mechanics, 2016. 58(4): p. 681-695.
    83. A.I.A. Karim, The stability of the fourth order Runge-Kutta method for the
    solution of systems of differential equations. Communication of the ACM,
    1966. 9(2): p. 113–116.
    84. T. Kajishima and K. Taira, Computational Fluid Dynamics, Incompressible
    Turbulent Flows. 2017, Springer Cham, p.38-58.
    85. Y. Sun, Y. Ueda, H. Suganaga, M. Haruki, S.-I. Kihara, and S. Takishima,
    Experimental and simulation study of the physical foaming process using
    high-pressure CO2. The Journal of Supercritical Fluids, 2016. 107: p. 733-745.
    86. M. Ataei, V. Shaayegan, C. Wang, F. Costa, S. Han, C.B. Park, and M.
    Bussmann, Numerical analysis of the effect of the local variation of viscosity
    on bubble growth and deformation in polymer foaming. Journal of Rheology,
    2019. 63(6): p. 895-903.
    87. G. Li, J. Wang, C.B. Park, P. Moulinie, and R. Simha. Comparison of SS-based
    and SL-based estimation of gas solubility. in Annual Technical Conference –
    ANTEC 2004, Conference Proceedings, 2: p. 2566-2575
    88. R.H. Pletcher, J.C. Tannehill, and D. Anderson, Computational Fluid
    Mechanics and Heat Transfer, 2nd Edition. 1997: Taylor and Francis. 816 p.63-
    74.
    89. D.A. Anderson, J.C. Tannehill, and R.H. Pletcher, Computational fluid
    mechanics and heat transfer, in Computational and physical processes in
    mechanics and thermal sciences. 2020, CRC Press, Boca Raton, FL.
    90. C.R. Taylor. Finite Difference Coefficients Calculator. 2016; Available from:
    https://web.media.mit.edu/~crtaylor/calculator.html.
    91. E. Kreyszig, Advanced engineering mathematics. 10th ed. 2011, Hoboken, NJ:
    John Wiley.
    92. J. Crank and P. Nicolson, A practical method for numerical evaluation of
    solutions of partial differential equations of the heat-conduction type.
    Mathematical Proceedings of the Cambridge Philosophical Society, 1947.
    43(1): p. 50-67.
    93. B. Fornberg, Generation of Finite Difference Formulas on Arbitrarily Spaced
    Grids. Mathematics of Computation, 1988. 51(184): p. 699-706.
    94. H.K. Versteeg and W. Malalasekera, An introduction to computational fluid
    dynamics: the finite volume method. 2nd ed. 2007, Harlow, England; New
    York: Pearson Education Ltd. xii, 503 p.446.
    95. E.C. Du Fort and S.P. Frankel, Stability Conditions in the Numerical
    Treatment of Parabolic Differential Equations. Mathematical Tables and Other
    Aids to Computation, 1953. 7(43): p. 135-152.
    96. P.D. Lax and R.D. Richtmyer, Survey of the stability of linear finite difference
    equations. Communications on Pure and Applied Mathematics, 1956. 9(2): p.
    267-293.
    97. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical
    Recipes in FORTRAN 77: The Art of Scientific Computing. 2nd ed.:
    Cambridge University Press, 1992
    98. L. Jianchun, G.A. Pope, and K. Sepehrnoori, A high-resolution finitedifference
    scheme for nonuniform grids. Applied Mathematical Modelling,
    1995. 19(3): p. 162-172.
    99. 2.29 Numerical Fluid Mechanics Spring 2015 – Lecture 11. Available from:
    https://ocw.mit.edu/courses/2-29-numerical-fluid-mechanics-spring-
    2015/4c7775832176aa3dde2904bd3074b970_MIT2_29S15_Lecture11.pdf
    100. S.K. Lele, Compact finite difference schemes with spectral-like resolution.
    Journal of Computational Physics, 1992. 103(1): p. 16-42.
    101. R.K. Shukla, M. Tatineni, and X. Zhong, Very high-order compact finite
    difference schemes on non-uniform grids for incompressible Navier-Stokes
    equations. Journal of Computational Physics, 2007. 224(2): p. 1064-1094.
    102. M. Easa Said, Area of Irregular Region with Unequal Intervals. Journal of
    Surveying Engineering, 1988. 114(2): p. 50-58.

    無法下載圖示 全文公開日期 2028/08/21 (校內網路)
    全文公開日期 2028/08/21 (校外網路)
    全文公開日期 2028/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE