簡易檢索 / 詳目顯示

研究生: 詹明峯
Ming-Feng Jang
論文名稱: 生物系統建模、最適化與控制設計
Modeling, Optimization, and Control Design for Biological Systems
指導教授: 周宜雄
Yi-Shyong Chou
口試委員: 劉清田
Ching-Tien Liou
王逢盛
Feng-Sheng Wang
錢義隆
I-Lung Chien
錢玉樹
Yu-Shu Chien
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 203
中文關鍵詞: 生物系統建模參數估計程序最適化控制設計逆迴遞設計模式預測控制敏感度分析
外文關鍵詞: Biological system modeling, Parameter estimation, Process optimization, Control design, Backstepping design, Model predictive control, Sensitivity analysis
相關次數: 點閱:345下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究,針對生物系統的建模、最適化和控制器設計三個層面分別深入研究與探討,模式建立是生物系統中相當重要的數學工具,可提升實驗數據的價值性與應用性,為後續所有延伸應用的基石,在文中,以乳酸與乙醇醱酵程序為例,探討生物模式建立的技術與參數估計的方法,提出一個新的參數搜尋技術,應用於大型參數空間範圍,可有效地加速模式參數估計的搜尋速度。程序操作與設計條件的最適化設計,攸關製程的效能表現與經濟影響,延用模式判別得到的系統數學模式,以生產率最大化為製程目標,運用最適化技術處理,可強化生物系統在製程上的表現,得到最佳的程序操作模式與設計條件。透過系統數學模式的模擬計算與最適化技術的整合,提供生物程序進行生產的不同規劃方案與資訊,加速製程的開發,節省部份的實驗成本與時間。另外,提出韌性逆迴遞控制器與線性多重模式預測控制器設計,針對生物系統的程序操作與特性,建立控制設計,處理系統含有不確定存在時,輸出可維持回到在設定點上,透過數值模擬與其他控制設計比較,所提的控制器可成功地排除干擾,並且表現優異。


    In this study, we explore the biological systems at three different levels, modeling, optimization and control design. Model development which is an important mathematical tool for biological systems would increase value and applicability of experimental data. It serves as a basis for the extended application in process design and control design of bioprocesses. Constructing the models for lactic acid and bioethanol fermentation processes are demonstrated. The technology of biological system modeling with parameter estimation is discussed. A new technique for searching parameter estimation procedure was proposed to successfully speed up the optimization computation, especially applicable to the large search parameter domain. Optimal design for process mode and operating conditions would affect the performance of biological systems on production and economic. The goal of process optimization is to do find the optimal conditions for enhanced bioprocess performance. Finally, robust back-stepping controller design and linear multi-model predictive controller design were proposed to deal with the problem of biological systems contained the uncertainties. Simulation results showed the proposed control schemes successfully drive the output of the continuous bioreactor to its desired trajectory.

    摘要 III Abstract V 誌謝 VII 目錄 IX 圖索引 XIII 表索引 XVII 符號說明 XXI 第壹章 緒論 1 1.1 前言 1 1.2 文獻回顧 8 1.2.1 生質乙醇論文回顧 8 1.2.2 乳酸醱酵製造論文回顧 9 1.2.3 乳酸菌醱酵製造乳酸近期回顧 10 1.2.4 細胞迴流乳酸程序論文回顧 13 1.2.5 非定義明確相對階數(Ill-defined relative degree)系統控制策略之回顧 13 1.2.6 重組蛋白質(Recombinant protein)論文回顧 15 1.2.7 最適化技術應用於生化程序之回顧 16 1.2.8 重組蛋白製造程序控制器設計之回顧 18 1.3 研究動機與目的 22 1.4 組織章節 23 第貳章 生物系統之建模與參數估計 24 2.1 前言 24 2.2 乳酸醱酵系統之非結構型模式 24 2.2.1 模式建立 24 2.2.2 模式選擇指標 30 2.2.3 計算結果與討論 30 2.3 同步醣化與醱酵程序生產生質乙醇之非結構型模式 46 2.3.1 模式建立 46 2.3.2 參數估計方法 50 2.3.3 模式驗證與結果 52 含變動參數的模式(Model with varying parameters) 52 含固定參數的模式(Model with fixed parameters) 53 2.4 同步醣化與醱酵程序生產生質乙醇之結構型模式 60 2.4.1 Cybernetic modeling簡介 60 2.4.2 Cybernetic modeling建立 61 2.4.3 參數估計方法與敏感度函數分析 66 2.4.4 模式驗證與討論 67 初次估測結果 67 兩階段式估測與結果 68 第參章 生物程序之程序最適化 88 3.1 前言 88 3.2 乳酸醱酵程序最適化 89 3.2.1 程序建立 89 3.2.2 效能與目標函數 96 3.2.3 最適化操作條件搜尋 98 3.2.4 結果與討論 99 3.3 非結構型模式生質乙醇生產之程序最適化 108 3.3.1 程序最適化 108 3.3.2 結論 114 3.4 結構型模式生質乙醇生產之程序最適化 114 3.4.1 饋料批式操作 114 3.4.2 程序最適化結果 116 第肆章 生物系統之控制系統設計 126 4.1 前言 126 4.2 適應性逆迴遞設計(Adaptive backstepping design) 126 4.2.1 問題描述 126 4.2.2 近似線性化 128 4.2.3 逆步階控制設計回饋控制 130 4.2.4 生化反應器的應用 132 4.2.5 結論 142 4.3 線性多重模式預測控制設計 142 4.3.1 數學模式 142 4.3.2 控制器設計 145 線性多重模式預測控制(Linear Multi-model Predictive Control, LM2PC) 145 線性多重模式建立(Linear multi-model) 146 最適化問題計算(Optimization problem) 147 4.3.3 結果與討論 148 4.3.4 結論 157 第伍章 結論 158 參考文獻 160 附錄一 代謝化學反應的理論值計算 169 附錄二 模式參數值 170 作者簡介 177

    [1] Akaike, H., 1974. A new look at the statistical model identification. Automatic Control, IEEE Transactions on 19, pp. 716-723.
    [2] Åkesson, M.;Karlsson, E.N.;Hagander, P.;Axelsson, J.P.; Tocaj, A., 1999. On-line detection of acetate formation in Escherichia coli cultures using dissolved oxygen responses to feed transients. Biotechnology and Bioengineering 64, pp. 590-598.
    [3] Altıntaş, M.M.;Kırdar, B.;Önsan, Z.İ.; Ülgen, K.Ö., 2002. Cybernetic modelling of growth and ethanol production in a recombinant Saccharomyces cerevisiae strain secreting a bifunctional fusion protein. Process Biochemistry 37, pp. 1439-1445.
    [4] Altıok, D.;Tokatlı, F.; Harsa, Ş., 2006. Kinetic modelling of lactic acid production from whey by Lactobacillus casei (NRRL B-441). Journal of Chemical Technology & Biotechnology 81, pp. 1190-1197.
    [5] Amrane, A., 2005. Analysis of the kinetics of growth and lactic acid production for Lactobacillus helveticus growing on supplemented whey permeate. Journal of Chemical Technology and Biotechnology 80, pp. 345-352.
    [6] Anuradha, R.;Suresh, A.K.; Venkatesh, K.V., 1999. Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochemistry 35, pp. 367-375.
    [7] Büyükkileci, A.O.; Harsa, S., 2004. Batch production of L(+) lactic acid from whey by Lactobacillus casei (NRRL B-441). Journal of Chemical Technology & Biotechnology 79, pp. 1036-1040.
    [8] Babaeipoura, V.;Shojaosadati, S.A.;Robatjazia, S.M.;Khalilzadeha, R.; Maghsoudi, N., 2007. Over-production of human interferon-[gamma] by HCDC of recombinant Escherichia coli. Process Biochemistry 42, pp. 112-117.
    [9] Bailey, J.E., 1998. Mathematical Modeling and Analysis in Biochemical Engineering: Past Accomplishments and Future Opportunities. Biotechnology Progress 14, pp. 8-20.
    [10] Banga, J.R.;Balsa-Canto, E.;Moles, C.G.; Alonso, A.A., 2003. Dynamic Optimization of Bioreactors - a review. Proceedings of the Indian Academy of Sciences 69, pp. 257-265.
    [11] Banga, J.R.;Balsa-Canto, E.;Moles, C.G.; Alonso, A.A., 2005. Dynamic optimization of bioprocesses: Efficient and robust numerical strategies. Journal of Biotechnology 117, pp. 407-419.
    [12] Ben Youssef, C.;Goma, G.; Olmos-Dichara, A., 2005. Kinetic modelling of Lactobacillus casei ssp. rhamnosus growth and lactic acid production in batch cultures under various medium conditions. Biotechnology Letters 27, pp. 1785-1789.
    [13] Ben Youssef, C.;Guillou, V.; Olmos-Dichara, A., 2000. Modelling and adaptive control strategy in a lactic fermentation process. Control Engineering Practice 8, pp. 1297-1307.
    [14] Berry, A.R.;Franco, C.M.M.;Zhang, W.; Middelberg, A.P.J., 1999. Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnology Letters 21, pp. 163-167.
    [15] Bindlish, R., 2003. Model order selection for process identification applied to an industrial ethylene furnace. Journal of Process Control 13, pp. 569-577.
    [16] Boonmee, M.;Leksawasdi, N.;Bridge, W.; Rogers, P.L., 2003. Batch and continuous culture of Lactococcus lactis NZ133: experimental data and model development. Biochemical Engineering Journal 14, pp. 127-135.
    [17] Cardello, R.J.; San, K.-Y., 1988. Design of controllers for batch bioreactors. Biotechnology and Bioengineering 32, pp. 519-526.
    [18] Cardoso, G.S.; Schnitman, L., 2011. Analysis of Exact Linearization and Aproximate Feedback Linearization Techniques. Mathematical Problems in Engineering 2011.
    [19] Chen, W.-H., 2001. Analytic predictive controllers for nonlinear systems with ill-defined relative degree. Control Theory and Applications, IEE Proceedings - 148, pp. 9-16.
    [20] Chen, W.-H.; Ballance, D.J., 2002. On a switching control scheme for nonlinear systems with ill-defined relative degree. Systems & Control Letters 47, pp. 159-166.
    [21] Chiou, J.-P.; Wang, F.-S., 1999. Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process. Computers & Chemical Engineering 23, pp. 1277-1291.
    [22] Choi, H.L.; Lim, J.T., 2005. Stabilizing a class of nonlinear systems based on approximate feedback linearization. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E88, pp. 1626-1630.
    [23] Choi, J.H.;Keum, K.C.; Lee, S.Y., 2006. Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical Engineering Science 61, pp. 876-885.
    [24] Chung, Y.C.;Chien, I.L.; Chang, D.M., 2006. Multiple-model control strategy for a fed-batch high cell-density culture processing. Journal of Process Control 16, pp. 9-26.
    [25] Cuthrell, J.E.; Biegler, L.T., 1989. Simultaneous optimization and solution methods for batch reactor control profiles. Computers and Chemical Engineering 13, pp. 49-62.
    [26] Datta, R.; Henry, M., 2006. Lactic acid: Recent advances in products, processes and technologies - A review. Journal of Chemical Technology and Biotechnology 81, pp. 1119-1129.
    [27] Datta, R.;Tsai, S.P.;Bonsignore, P.;Moon, S.H.; Frank, J.R., 1995. Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiology Reviews 16, pp. 221-231.
    [28] Davis, R.A., 2008. Parameter estimation for simultaneous saccharification and fermentation of food waste into ethanol using Matlab Simulink. Applied biochemistry and biotechnology 147, pp. 11-21.
    [29] De la Hoz Siegler, H.;Ben-Zvi, A.;Burrell, R.E.; McCaffrey, W.C., 2011. The dynamics of heterotrophic algal cultures. Bioresource technology 102, pp. 5764-5774.
    [30] Deutscher, J.; Schmid, C., 2006. A state space embedding approach to approximate feedback linearization of single input nonlinear control systems. International Journal of Robust and Nonlinear Control 16, pp. 421-440.
    [31] Galvanauskas, V.;Simutis, R.; Lübbert, A., 2004. Hybrid process models for process optimisation, monitoring and control. Bioprocess and Biosystems Engineering 26, pp. 393-400.
    [32] Gernaey, K.V.;Lantz, A.E.;Tufvesson, P.;Woodley, J.M.; Sin, G., 2010. Application of mechanistic models to fermentation and biocatalysis for next-generation processes. Trends Biotechnol 28, pp. 346-354.
    [33] Giorno, L.;Chojnacka, K.;Donato, L.; Drioli, E., 2002. Study of a cell-recycle membrane fermentor for the production of lactic acid by Lactobacillus bulgaricus. Industrial and Engineering Chemistry Research 41, pp. 433-440.
    [34] Goyal, D.;Sahni, G.; Sahoo, D.K., 2009. Enhanced production of recombinant streptokinase in Escherichia coli using fed-batch culture. Bioresource technology 100, pp. 4468-4474.
    [35] Guardabassi, G.O.; Savaresi, S.M., 2001. Approximate linearization via feedback — an overview. Automatica 37, pp. 1-15.
    [36] Hauser, J.;Sastry, S.; Kokotovic, P., 1992. Nonlinear control via approximate input-output linearization: the ball and beam example. Automatic Control, IEEE Transactions on 37, pp. 392-398.
    [37] Henson, M.A.; Seborg, D.E., 1992. Nonlinear control strategies for continuous fermenters. Chemical Engineering Science 47, pp. 821-835.
    [38] Henson, M.A.; Seborg, D.E., 1997. Nonlinear process control. Prentice Hall PTR.
    [39] Hofvendahla, K.; Hahn–Hägerdal, B., 2000. Factors affecting the fermentative lactic acid production from renewable resources1. Enzyme and Microbial Technology 26, pp. 87-107.
    [40] Hujanen, M.;Linko, S.;Linko, Y.Y.; Leisola, M., 2001. Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Applied Microbiology and Biotechnology 56, pp. 126-130.
    [41] Hujanen, M.; Linko, Y.Y., 1996. Effect of temperature and various nitrogen sources on L (+)-lactic acid production by Lactobacillus casei. Applied Microbiology and Biotechnology 45, pp. 307-313.
    [42] Isidori, A., 1995. Nonlinear Control Systems. Springer.
    [43] Jenzsch, M.;Gnoth, S.;Beck, M.;Kleinschmidt, M.;Simutis, R.; Lübbert, A., 2006a. Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes. Journal of Biotechnology 127, pp. 84-94.
    [44] Jenzsch, M.;Simutis, R.; Luebbert, A., 2006b. Generic model control of the specific growth rate in recombinant Escherichia coli cultivations. Journal of Biotechnology 122, pp. 483-493.
    [45] Jiménez-Hornero, J.E.;Santos-Dueñas, I.M.; García-García, I., 2009. Optimization of biotechnological processes. The acetic acid fermentation. Part II: Practical identifiability analysis and parameter estimation. Biochemical Engineering Journal 45, pp. 7-21.
    [46] John, R.P.;G.S, A.;Nampoothiri, K.M.; Pandey, A., 2009. Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnology Advances 27, pp. 145-152.
    [47] John, R.P.;Nampoothiri, K.M.; Pandey, A., 2007. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology 74, pp. 524-534.
    [48] Kavanagh, J.M.; Barton, G.W., 2008. Productivity improvement of recombinant Escherichia coli fermentation via robust optimization. Bioprocess and Biosystems Engineering 31, pp. 137-143.
    [49] Kim, C.H.; Rhee, S.K., 1993. Process development for simultaneous starch saccharification and ethanol fermentation by Zymomonas mobilis. Process Biochemistry 28, pp. 331-339.
    [50] Kobayashi, F.; Nakamura, Y., 2004. Mathematical model of direct ethanol production from starch in immobilized recombinant yeast culture. Biochemical Engineering Journal 21, pp. 93-101.
    [51] Kompala, D.S.;Ramkrishna, D.; Tsao, G.T., 1984. Cybernetic modeling of microbial growth on multiple substrates. Biotechnology and Bioengineering 26, pp. 1272-1281.
    [52] Korytowski, A.;Szymkat, M.;Maurer, H.; Vossen, G., Optimal control of a fedbatch fermentation process: Numerical methods, sufficient conditions and sensitivity analysis, Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, pp. 1551-1556, 9-11 Dec. 2008, 2008
    [53] Kroumov, A.D.;Módenes, A.N.; Tait, M.C.d.A., 2006. Development of new unstructured model for simultaneous saccharification and fermentation of starch to ethanol by recombinant strain. Biochemical Engineering Journal 28, pp. 243-255.
    [54] Kumar, K.K.; Patwardhan, S.C., 2002. Nonlinear Predictive Control of Systems Exhibiting Input Multiplicities Using the Multimodel Approach. Industrial & Engineering Chemistry Research 41, pp. 3186-3198.
    [55] Kwon, S.;Yoo, I.K.;Lee, W.G.;Chang, H.N.; Chang, Y.K., 2001. High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnology and Bioengineering 73, pp. 25-34.
    [56] Lee, C.G.;Kim, C.H.; Rhee, S.K., 1992. A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis. Bioprocess and Biosystems Engineering 7, pp. 335-341.
    [57] Lee, J.; Ramirez, W.F., 1994. Optimal fed-batch control of induced foreign protein production by recombinant bacteria. AIChE Journal 40, pp. 899-907.
    [58] Lee, S.Y., 1996. High cell-density culture of Escherichia coli. Trends Biotechnol 14, pp. 98-105.
    [59] Levisauskas, D.;Galvanauskas, V.;Henrich, S.;Wilhelm, K.;Volk, N.; Lübbert, A., 2003. Model-based optimization of viral capsid protein production in fed-batch culture of recombinant Escherichia coli. Bioprocess and Biosystems Engineering 25, pp. 255-262.
    [60] Levisauskas, D.;Galvanauskas, V.;Simutis, R.; Lübbert, A., 1999. Model based calculation of substrate/inducer feed-rate profiles in fed-batch processes for recombinant protein production. Biotechnology Techniques 13, pp. 37-42.
    [61] Lin, H.-T.; Wang, F.-S., 2007. Optimal design of an integrated fermentation process for lactic acid production. AIChE Journal 53, pp. 449-459.
    [62] Lin, H.-T.; Wang, F.-S., 2008. Fuzzy optimization of extractive fermentation processes including cell recycle for lactic acid production. Chemical Engineering and Technology 31, pp. 249-257.
    [63] Lin, J.Q.;Lee, S.M.; Koo, Y.M., 2004a. Model development for lactic acid fermentation and parameter optimization using genetic algorithm. Journal of Microbiology and Biotechnology 14, pp. 1163-1169.
    [64] Lin, J.Q.;Lee, S.M.; Koo, Y.M., 2004b. Modeling and simulation of lactic acid fermentation with inhibition effects of lactic acid and glucose. Biotechnology and Bioprocess Engineering 9, pp. 52-58.
    [65] Lin, J.Q.;Lee, S.M.; Koo, Y.M., 2005. Modeling and simulation of simultaneous saccharification and fermentation of paper mill sludge to lactic acid. Journal of Microbiology and Biotechnology 15, pp. 40-47.
    [66] Mahadevan, R.; Doyle III, F.J., 2003. On-line optimization of recombinant product in a fed-batch bioreactor. Biotechnol Prog 19, pp. 639-646.
    [67] Mandli, A.R.; Modak, J.M., 2012. Evolutionary Algorithm for the Determination of Optimal Mode of Bioreactor Operation. Industrial & Engineering Chemistry Research 51, pp. 1796-1808.
    [68] Mohseni, S.S.;Babaeipour, V.; Vali, A.R., 2009. Design of sliding mode controller for the optimal control of fed-batch cultivation of recombinant E. coli. Chemical Engineering Science 64, pp. 4433-4441.
    [69] Mojovic, L.;Pejin, D.;Grujic, O.;Markov, S.;Pejin, J.;Rakin, M.;Vukasinovic, M.;Nikolic, S.; Savic, D., 2009. Progress in the production of bioethanol on starch-based feedstocks. Chemical Industry and Chemical Engineering Quarterly 15, pp. 211-226.
    [70] Monteagudo, J.M.;Rodríguez, L.;Rincón, J.; Fuertes, J., 1997. Kinetics of lactic acid fermentation by Lactobacillus delbrueckii grown on beet molasses. Journal of Chemical Technology and Biotechnology 68, pp. 271-276.
    [71] Mrabet, M., Adaptive predictive controllers for nonlinear systems with ill-defined relative degree, Industrial Technology, 2004. IEEE ICIT '04. 2004 IEEE International Conference on, 1, pp. 21-26 Vol. 21, 8-10 Dec. 2004, 2004
    [72] Nadri, M.;Trezzani, I.;Hammouri, H.;Dhurjati, P.;Longin, R.; Lieto, J., 2006. Modeling and observer design for recombinant Escherichia coli strain. Bioprocess and Biosystems Engineering 28, pp. 217-225.
    [73] Nandasana, A.D.; Kumar, S., 2008. Kinetic modeling of lactic acid production from molasses using Enterococcus faecalis RKY1. Biochemical Engineering Journal 38, pp. 277-284.
    [74] Nishiwaki, A.; Dunn, I.J., 1999. Performance of a two-stage fermentor with cell recycle for continuous production of lactic acid. Bioprocess Engineering 21, pp. 299-305.
    [75] Nishiwaki, A.; Dunn, I.J., 2005. Comparison of lactic acid productivities at high substrate conversions in a continuous two-stage fermenter with cell recycle using different kinetic models. Chemical Engineering Communications 192, pp. 219-236.
    [76] Ochoa, S.;Yoo, A.;Repke, J.-U.;Wozny, G.; Yang, D.R., 2007. Modeling and Parameter Identification of the Simultaneous Saccharification-Fermentation Process for Ethanol Production. Biotechnology Progress 23, pp. 1454-1462.
    [77] Oh, H.;Wee, Y.-J.;Yun, J.-S.; Ryu, H.-W., 2003. Lactic acid production through cell-recycle repeated-batch bioreactor. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology 107, pp. 603-614.
    [78] Olmos-Dichara, A.;Ampe, F.;Uribelarrea, J.L.;Pareilleux, A.; Goma, G., 1997. Growth and lactic acid production by Lactobacillus casei ssp. rhamnosus in batch and membrane bioreactor: Influence of yeast extract and Tryptone enrichment. Biotechnology Letters 19, pp. 709-714.
    [79] Porzio, G.F.;Prussi, M.; Chiaramonti, D., 2011. Process Analysis and Modeling for 2nd Generation Lignocellulosic Bioethanol Production. Chemical Engineering Transactions 25, pp. 869-874.
    [80] Ramkrishna, D., 1983. A Cybernetic Perspective of Microbial Growth, Foundations of Biochemical Engineering. AMERICAN CHEMICAL SOCIETY, pp. 161-178.
    [81] Ravi Sriniwas, G.;Arkun, Y.;Chien, I.L.; Ogunnaike, B.A., 1995. Nonlinear identification and control of a high-purity distillation column: a case study. Journal of Process Control 5, pp. 149-162.
    [82] Reboulet, C.; Champetier, C., 1984. A new method for linearizing non-linear systems : the pseudolinearization+. International Journal of Control 40, pp. 631-638.
    [83] Reddy, G.;Altaf, M.;Naveena, B.J.;Venkateshwar, M.; Kumar, E.V., 2008. Amylolytic bacterial lactic acid fermentation -- A review. Biotechnology Advances 26, pp. 22-34.
    [84] Riascos, C.A.M.; Pinto, J.M., 2004. Optimal control of bioreactors: a simultaneous approach for complex systems. Chemical Engineering Journal 99, pp. 23-34.
    [85] Richter, K.; Nottelmann, S., 2004. An empiric steady state model of lactate production in continuous fermentation with total cell retention. Engineering in Life Sciences 4, pp. 426-432.
    [86] Roeva, O.; Tzonkov, S., 2006. Modelling of Escherichia coli cultivations: acetate inhibition in a fed-batch culture. Bioautomation 4, pp. 1-11.
    [87] Roubos, J.A.;De Gooijer, C.D.;Van Straten, G.; Van Boxtel, A.J.B., 1997. Comparison of optimization methods for fed-batch cultures of hybridoma cells. Bioprocess Engineering 17, pp. 99-102.
    [88] Rugh, W.J., Design of nonlinear compensators for nonlinear systems by an extended linearization technique, Decision and Control, 1984. The 23rd IEEE Conference on, 23, pp. 69-73, Dec. 1984, 1984
    [89] Sanchez, O.J.; Cardona, C.A., 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource technology 99, pp. 5270-5295.
    [90] Sarkar, D.; Modak, J.M., 2003. Optimisation of fed-batch bioreactors using genetic algorithms. Chemical Engineering Science 58, pp. 2283-2296.
    [91] Shin, D.-G.;Yoo, A.-R.;Kim, S.-W.; Yang, D.-R., 2006. Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii. Journal of Microbiology and Biotechnology 16, pp. 1355-1361.
    [92] Shin, H.S.; Lim, H.C., 2007. Maximization of metabolite in fed-batch cultures: Sufficient conditions for singular arc and optimal feed rate profiles. Biochemical Engineering Journal 37, pp. 62-74.
    [93] Shojaosadati, S.A.;Varedi Kolaeil, S.M.;Babaeipour, V.; Farnoud, A.M., 2008. Recent advances in high cell density cultivation for production of recombinant protein. Iranian Journal of Biotechnology 6, pp. 63-84.
    [94] Silva, R.G.; Kwong, W.H., 1999. Nonlinear model predictive control of chemical processes. Brazilian Journal of Chemical Engineering 16, pp. 83-99.
    [95] Skolpap, W.;Nuchprayoon, S.;Scharer, J.M.;Grisdanurak, N.;Douglas, P.L.; Moo-Young, M., 2008. Fed-batch optimization of α-amylase and protease-producing Bacillus subtilis using genetic algorithm and particle swarm optimization. Chemical Engineering Science 63, pp. 4090-4099.
    [96] Song, H.-S.;Kim, S.J.; Ramkrishna, D., 2012. Synergistic Optimal Integration of Continuous and Fed-Batch Reactors for Enhanced Productivity of Lignocellulosic Bioethanol. Industrial & Engineering Chemistry Research 51, pp. 1690-1696.
    [97] Song, H.-S.; Ramkrishna, D., 2010. Issues with increasing bioethanol productivity: A model directed study. Korean Journal of Chemical Engineering 27, pp. 576-586.
    [98] Srichuwong, S.;Fujiwara, M.;Wang, X.;Seyama, T.;Shiroma, R.;Arakane, M.;Mukojima, N.; Tokuyasu, K., 2009. Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass and Bioenergy 33, pp. 890-898.
    [99] Srinivasan, B.;Bonvin, D.;Visser, E.; Palanki, S., 2003a. Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty. Computers & Chemical Engineering 27, pp. 27-44.
    [100] Srinivasan, B.;Palanki, S.; Bonvin, D., 2003b. Dynamic optimization of batch processes: I. Characterization of the nominal solution. Computers & Chemical Engineering 27, pp. 1-26.
    [101] Tartakovsky, B.;Ulitzur, S.; Sheintuch, M., 1995. Optimal control of fed-batch fermentation with autoinduction of metabolite production. Biotechnology Progress 11, pp. 80-87.
    [102] Tholudur, A.; Ramirez, W.F., 1996. Optimization of fed-batch bipreactors using neural network parameter function models. Biotechnology Progress 12, pp. 302-309.
    [103] Tian, Y.;Zhang, J.; Morris, J., 2002. Optimal control of a fed-batch bioreactor based upon an augmented recurrent neural network model. Neurocomputing 48, pp. 919-936.
    [104] Valencia Peroni, C.;Kaisare, N.S.; Lee, J.H., 2005. Optimal control of a fed-batch bioreactor using simulation-based approximate dynamic programming. Control Systems Technology, IEEE Transactions on 13, pp. 786-790.
    [105] Varner, J.; Ramkrishna, D., 1999a. Metabolic Engineering from a Cybernetic Perspective. 1. Theoretical Preliminaries. Biotechnology Progress 15, pp. 407-425.
    [106] Varner, J.; Ramkrishna, D., 1999b. Metabolic engineering from a cybernetic perspective. 2. Qualitative investigation of nodal architechtures and their response to genetic perturbation. Biotechnology Progress 15, pp. 426-438.
    [107] Varner, J.; Ramkrishna, D., 1999c. The non-linear analysis of cybernetic models. Guidelines for model formulation. Journal of Biotechnology 71, pp. 67-104.
    [108] Vijayakumar, J.;Aravindan, R.; Viruthagiri, T., 2008. Recent Trends in the Production, Purification and Application of Lactic Acid Chemical & Biochemical Engineering Quarterly 22, p. 20.
    [109] Wang, F.-S.; Cheng, W.-M., 1999. Simultaneous Optimization of Feeding Rate and Operation Parameters for Fed-Batch Fermentation Processes. Biotechnology Progress 15, pp. 949-952.
    [110] Wang, F.-S.; Lin, K.-J., 2003. Performance analysis and fuzzy optimization of a two-stage fermentation process with cell recycling including an extractor for lactic acid production. Chemical Engineering Science 58, pp. 3753-3763.
    [111] Wee, Y.-J.;Kim, H.-O.;Yun, J.-S.; Ryu, H.-W., 2006a. Pilot-scale lactic acid production via batch culturing of Lactobacillus sp. RKY2 using corn steep liquor as a nitrogen source. Food Technology and Biotechnology 44, pp. 293-298.
    [112] Wee, Y.-J.;Kim, J.-N.; Ryu, H.-W., 2006b. Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology 44, pp. 163-172.
    [113] Wee, Y.-J.;Kim, J.-N.;Yun, J.-S.; Ryu, H.-W., 2004a. Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme and Microbial Technology 35, pp. 568-573.
    [114] Wee, Y.-J.;Kim, J.-N.;Yun, J.-S.; Ryu, H.-W., 2005. Optimum conditions for the biological production of lactic acid by a newly isolated lactic acid bacterium, Lactobacillus sp. RKY2. Biotechnology and Bioprocess Engineering 10, pp. 23-28.
    [115] Wee, Y.-J.;Reddy, L.V.A.; Ryu, H.-W., 2008. Fermentative production of L(+)-lactic acid from starch hydrolyzate and corn steep liquor as inexpensive nutrients by batch culture of Enterococcus faecalis RKY1. Journal of Chemical Technology & Biotechnology 83, pp. 1387-1393.
    [116] Wee, Y.-J.; Ryu, H.-W., 2009. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresource technology 100, pp. 4262-4270.
    [117] Wee, Y.-J.;Yun, J.-S.;Kim, D.; Ryu, H.-W., 2006c. Batch and repeated batch production of L(+)-lactic acid by Enterococcus faecalis RKY1 using wood hydrolyzate and corn steep liquor. Journal of Industrial Microbiology and Biotechnology 33, pp. 431-435.
    [118] Wee, Y.-J.;Yun, J.-S.;Park, D.-H.; Ryu, H.-W., 2004b. Biotechnological production of L(+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis. Biotechnology Letters 26, pp. 71-74.
    [119] Xavier, A.M.R.B.;Gonçalves, L.M.D.;Moreira, J.L.; Carrondo, M.J.T., 1995. Operational patterns affecting lactic acid production in ultrafiltration cell recycle bioreactor. Biotechnology and Bioengineering 45, pp. 320-327.
    [120] Xiong, Z.; Zhang, J., 2005. Neural network model-based on-line re-optimisation control of fed-batch processes using a modified iterative dynamic programming algorithm. Chemical Engineering and Processing: Process Intensification 44, pp. 477-484.
    [121] Xu, G.-Q.;Chu, J.;Wang, Y.-H.;Zhuang, Y.-P.;Zhang, S.-L.; Peng, H.-Q., 2006. Development of a continuous cell-recycle fermentation system for production of lactic acid by Lactobacillus paracasei. Process Biochemistry 41, pp. 2458-2463.
    [122] Yazdani, S.S.;Shakri, A.R.; Chitnis, C.E., 2004. A high cell density fermentation strategy to produce recombinant malarial antigen in E. coli. Biotechnology Letters 26, pp. 1891-1895.

    QR CODE