簡易檢索 / 詳目顯示

研究生: 游哲豪
CHE-HAO YO
論文名稱: 結合低同調干涉之表面電漿共振生醫感測與相位靈敏度分析
Phase Sensitivity Analysis for Low-Coherence Interferometry based Surface Plasmon Resonance Biosensing
指導教授: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-hung Lin
口試委員: 徐世祥
Shih-Hsiang Hsu
何文章
WEN-JENG HO
莊敏宏
Miin-Horng Juang
葉秉慧
Pinghui Sophia Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 74
中文關鍵詞: 表面電漿共振低同調干涉相位生醫感測
外文關鍵詞: Surface Plasmon Resonance, Optical Fiber Low Coherence Interferometry, Phase, Biosensing
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面電漿共振(Suface Plasmon Resonance, SPR) 是利用光的全反射。若在反射面附近有金屬層,光全反射時的漸逝波會引發金屬層上電子的集體共振,造成反射光發生劇烈的衰減。此衰減信號的特性與反射面附近的環境大有關係,我們就可利用此種特性來檢測或監控待測物。由於光束的電子振盪與金屬薄膜內金屬原子產生共振作用時,常見的表面電漿共振量測方式有四種,角度調制、波長調制、強度調制與相位調制,其中又以相位調制之靈敏度為最高,因為在特定角度或特定波長相位的變化量是非常劇烈的,當待測物折射率不同時其相位變化是所有量測方法中最顯著的。
    本論文提出以低同調干涉結合表面電漿共振以相位量測的方式提高靈敏度,由於SPR對於極化非常敏感只對TM偏振光有反應,因此量測系統的光纖全部改用極化保持光纖加強系統穩定性,並提高步進馬達解析度為7.56-nm/step,增加SPR解析度。
    比較串聯與並聯兩者不同低同調干涉量測系統應用於SPR的差異,串聯低同調干涉系統量測microRNA-21靈敏度為0.479 μm/μM,由本實驗室使用之步進馬達7.56-nm/step推算解析度為1.58×〖10〗^(-2) μM,而並聯低同調干涉實驗誤差較大,需要更為穩定的系統,因此這部分以探討系統誤差、分析原因以及如何改善為主。


    Surface plasmon resonance (SPR) can be excited by total internal reflection on a metal layer near reflective surface. The evanescent wave will then form a collective resonance of the electrons on the metal layer and illustrate a sharp attenuation of the reflect light at the resonant angle, which is easily influenced by the environmental variation and utilized in biological detection. There are four kinds of SPR characteristics: angle, wavelength, intensity and phase modulation. Among them, the phase modulation demonstrates the highest sensitivity became the phase change amount from different refractive index of the device under test (DUT) at a specific angle or a specific wavelength is very sharp and deep.
    In this thesis, a novel approach to improve SPR spatial phase biosensing is demonstrated. Because SPR is very sensitive to polarization and only occurs in transverse magnetic (TM) polarized light, all the optical fibers in the measurement system are converted to the polarization-maintaining optical fiber to enhance the testing stability. Furthermore, the stepper motor resolution is increased up to 7.56-nm/step to increase SPR resolution.
    The SPR and optical fiber low coherence interferometry (OFLCI) are interrogated to improve the sensitivity and two different approaches from serial and parallel structures are compared for characterization consistency. The sensitivity of microRNA from two staged serial OFLCI system experimentally demonstrates 0.479 μm/μM. Its theoretical resolution is estimated to be 1.58×〖10〗^(-2) μM after the 7.56-nm/step stepper motor is used. And the parallel OFLCI based SPR is not stable in the interferogram from low coherent source interfered with laser. The systematic errors will then be analyzed and discussed.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1研究背景 1 1.2研究目的 1 1.3研究重要性 2 1.4論文架構 3 第二章 文獻探討 4 2.1 表面電漿共振原理 4 2.1.1 表面電漿波 4 2.1.2激發表面電漿條件與稜鏡耦合 8 2.2 光學干涉 10 2.2.1 干涉原理 10 2.2.2光學同調性 12 2.3馬赫-詹德干涉儀 14 2.4光纖低同調光學干涉 15 2.5低通濾波器訊號處理 17 2.6 窗口傅立葉轉換 19 2.7國內外研究比較 22 2.8表面電漿生物感測器 24 第三章 研究方法 26 3.1金膜厚度設計 26 3.1.1 Krestchmann結構下系統反射率 26 3.1.2金薄膜厚度設計與討論 28 3.2 金薄膜之製程 30 3.2.1 使用設備 30 3.2.2 製程步驟 31 第四章 實驗步驟與結果分析 33 4.1 串聯光纖低同調干涉實驗 33 4.1.1 實驗架構 33 4.1.2 入射角度之控制 34 4.1.3 OFLCI SPR實驗步驟 35 4.1.4 DNA固定化 37 4.1.5 量測結果與討論 43 4.2 並聯光纖低同調干涉實驗 52 4.2.1 實驗架構 52 4.2.2 OFLCI SPR實驗步驟 53 4.2.3 訊號處理與分析 53 4.2.4 量測結果與討論 55 第五章 結論與未來展望 57 5.1 結論 57 5.2 未來展望 58 參考文獻 59

    [1] E. Krestschmann, "The determination of the optical constants of metals by excitation of surface plasmons", Z. Physik, vol. 241, p. 313, 1971.
    [2] R. Lee, J. Hench and G. Ruvkun, "Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway", Current Biology, vol. 11, no. 24, pp. 1950-1957, 2001.
    [3] F. Wahid, A. Shehzad, T. Khan, and Y. Y. Kim, "MicroRNAs: Synthesis, mechanism, function, and recent clinical trials, "Biochimica et Biophysica Acta (BBA) - Molecular Cell Research", vol. 1803, pp. 1231-1243, 2010.
    [4] “V. Ghai and K. Wang, "Recent progress toward the use of circulating microRNAs as clinical biomarkers", Archives of Toxicology, vol. 90, pp. 2959-2978, 2016.
    [5] C. Braicu, R. Cojocneanu-Petric, S. Chira, A.Truta, A.Floares, P.Achimas-Cadariu, I. Berindan-Neagoe, and B. Petrut, "Clinical and pathological implications of miRNA in bladder cancer", International Journal of Nanomedicine, p. 791, 2015.
    [6] Bionavis.com. Bionavis: Mathematics Of Surface Plasmon Resonance. 2020.
    [7] R. Lee, J. Hench and G. Ruvkun, "Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway", Current Biology, vol. 11, no. 24, pp. 1950-1957, 2001.
    [8] P. Xu, S. Vernooy, M. Guo and B. Hay, "The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism", Current Biology, vol. 13, no. 9, pp. 790-795, 2003.
    [9] 吳民耀與劉威志, “表面電漿子理論與模擬” 物理雙月刊,廿八卷二期,pp. 486-496,2006
    [10] J. Homola, "Surface Plasmon resonance sensors for detection of chemical and biological species", Chemical Reviews, vol. 108, no. 2, pp. 462–493, Feb. 2008.
    [11] E. Krestschmann, "The determination of the optical constants of metals by excitation of surface plasmons", Z. Physik, vol. 241, p. 313, 1971.
    [12] B. Kimbrough, J. Millerd, J. Wyant, and J. Hayes, "Low-coherence vibration insensitive Fizeau interferometer", SPIE Optics + Photonics, vol. 6292, p. 12, 2006.
    [13] N. Brock, J. Hayes, B. Kimbrough, J. Millerd, M. North-Morris, M. Novak, et al., "Dynamic interferometry", Optics and Photonics, vol. 5875, p. 10, 2005.
    [14] C. Lawson and R. Michael, "Fiber optic low-coherence interferometry for non-invasive silicon wafer characterization", Journal of Crystal Growth, vol. 137, no. 1-2, pp. 37-40, 1994.
    [15] R. Hansen, "A simple near-field envelope formula for square aperture antennas". Radio Science, 26(2), pp. 611-617, 1991.
    [16] P. Franses, Moving average filters and unit roots. Economics Letters, 37(4), pp. 399-403, 1991.
    [17] M. Takeda, H. Ina and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry", Journal of the Optical Society of America 72, pp. 56-160, 1982.
    [18] S. Wu, H. Ho, W. Law, C. Lin, and S. Kong, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration", Optics Letters, 29(20), p. 2378, 2004.
    [19] Y. Zeng, X. Wang, J. Zhou, R. Miyan, J. Qu, H. Ho, K. Zhou, B. Gao, and Y. Shao, "Phase interrogation SPR sensing based on white light polarized interference for wide dynamic detection range", Optics Express, 28(3), p. 3442, 2020.
    [20] 王雅榕,“改善光相位解析式表面電漿共振生物感測器之靈敏度及表面電漿共振影像系統之發展,”國立陽明大學生醫光電研究所碩士論文, 2009
    [21] H.P. Ho and W.W. Lam, "Application of differential phase measurement technique to surface plasmon resonance sensors", Sensors and Actuators B: Chemical, vol. 96, pp. 554–559, 2003.
    [22] V. Scognamiglio, F. Arduini, G. Palleschi, and G. Rea, "Biosensing technology for sustainable food safety", TrAC Trends in Analytical Chemistry, 62, pp. 1-10, 2014.
    [23] Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K. Yong, "Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor", Scientific Reports, 6(1), 2016.
    [24] J. Homola, "Springer series on chemical sensors and biosensors", Springer, vol. 4, pp. 3-44, 2006.
    [25] A. Rakić, A. Djurišić, J. Elazar and M. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices", Applied Optics, vol. 37, no. 22, p. 5271, 1998.
    [26] P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals", Physical Review B, vol. 6, pp. 4370-4379, 1972.
    [27] SCHOTT Taiwan Ltd., optical glass data sheets, 2015.’
    [28] N. Prabhakar, K. Arora, S. Arya, P. Solanki, M. Iwamoto, H. Singh, and B. Malhotra, "Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance", The Analyst, 133(11), p. 1587, 2008.
    [29] Synfacts, "Chemically Induced Vinylphosphonothiolate Electrophiles for Thiol–Thiol Bioconjugations", 16(07), p. 0851, 2020.
    [30] S. A. Kim, S. J. Kim, S. H. Lee, T. H. Park, K. M. Byun, S. G. Kim, et al., "Avian influenza-DNA hybridization detection using wavelength interrogation-based surface plasmon resonance biosensor," presented at the 2009 IEEE Sensors, 2009.

    無法下載圖示 全文公開日期 2025/08/06 (校內網路)
    全文公開日期 2035/08/06 (校外網路)
    全文公開日期 2040/08/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE