簡易檢索 / 詳目顯示

研究生: 饒文娟
Win-chun Jao
論文名稱: 果膠的混摻水膠之藥物釋放行為及生物相容性
Drug release behavior and biocompatibility of pectin blend hydrogels
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 李振綱
Cheng-Kang Lee
王大銘
Da-Ming Wang
鍾竺均
Ying-Chien Chung
于大光
Da-Guang Yu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 144
中文關鍵詞: 果膠海藻酸聚乙烯醇酸鹼敏感性水膠控制釋放模擬腸胃液茜素紅氨比西林幾丁聚醣肝素透明質酸生物相容性
外文關鍵詞: pectin, alginate, polyvinyl alcohol, pH-sensitivity, hydrogel, controlled release, simulated physiological fluids, alizarin red S, ampicillin, chitosan, heparin, hyaluronic acid, biocompatibility
相關次數: 點閱:481下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以果膠(pectin)為主要材料,氯化鈣為交聯劑(crosslinker)混摻聚乙烯醇(PVA)或海藻酸鈉(Alg)來製備水膠薄膜,並探討其藥物釋放行為及生物相容性。本論文共分為三大部分: 第一部份為酸鹼與溫度敏感型pectin/PVA混摻水膠之載入釋放行為及血液相容性探討。第二部份為酸鹼敏感型pectin/Alg混摻水膠在模擬腸胃液之藥物控制釋放行為探討。第三部份為改質pectin/Alg/PVA混摻水膠之血液相容性、生物相容性與表面行為探討。
    第一部份之pectin/PVA混摻水膠薄膜,在pH 2~12 進行酸鹼敏感測試,然後在2~45 °C之下測量混合焓(Hmix)。其含水量(water content)可用DSC檢測。Ca2+交聯劑的影響可利用彈性模數、有效交聯密度(effective crosslinking density, νe)及高分子-溶劑之交互作用參數(χ)由Flory theory 計算。Pectin/PVA混摻水膠薄膜經由茜素紅載入實驗的結果符合Langmuir等溫吸附方程式,而其釋放動力學則是較符合Fickian diffusion模式。血液相容性測試結果顯示pectin/PVA混摻水膠薄膜的蛋白質及血小板之吸附隨果膠含量增加而減少。
    第二部份的pectin/Alg混摻水膠薄膜作為氨比西林(ampicillin)的控制釋放載體,並比較不同混摻比水膠在模擬腸胃液中控制釋放特性上的差異。此混摻水膠薄膜對氨比西林的載藥量符合Langmuir吸附等溫線,其氨比西林藥物在模擬胃液(simulated gastric fluid, pH 1.2)、模擬結腸液(simulated colonic fluid, pH 6.8)及模擬小腸液(simulated intestinal fluid, pH 7.4)的釋放動力學遵循Fickian diffusion機制。Pectin/Alg混摻水膠薄膜釋放氨比西林速率與其Ca2+交聯度、果膠含量、果膠酶及pH值有相關性。實驗結果證明pectin/Alg混摻水膠可適用於腸道的藥物區域傳遞系統(localized delivery of drug)。
    第三部份以pectin/Alg/PVA混摻水膠為基材,利用氧電漿活化表面,接枝丙烯酸(acrylic acid)於膜表面產生-COOH基團,與幾丁聚醣(chitosan)結合,再以幾丁聚醣上的NH2與肝素(heparin)或透明質酸(hyaluronic acid)共價結合,分別探討其表面改質後水膠的親水性、血液相容性、抑菌性、與L929纖維母細胞毒性,並且分析血液凝固性。改質後pectin/Alg/PVA混摻薄膜的表面性質可利用XPS和染料分析出表面接枝結構。表面接枝肝素和透明質酸可增加薄膜之親水性。表面經接枝幾丁聚醣後對大腸桿菌(Escherichia coli)及金黃色葡萄球菌(Staphylococcus aureus)有抑菌性。蛋白質吸附試驗發現未改質的pectin/Alg/PVA混摻薄膜其人體血清白蛋白(HSA)或人體血漿纖維蛋白原(HPF)之吸附量較接枝肝素的pectin/Alg/PVA-CS-HEP水膠和接枝透明質酸的pectin/Alg/PVA-CS-HA水膠後而有負電荷表面者為高。活化部分凝血酶原時間(APPT)的結果發現接枝肝素之pectin/Alg /PVA-CS-HEP水膠的凝血時間有大幅增長且血小板吸附降低。此外經改質前後的水膠薄膜以L929纖維母細胞觀察其生物毒性,其結果顯示改質後pectin/Alg/PVA混摻水膠未析出有毒物質。
    總結實驗結果顯示改質後果膠的混摻薄膜可應用在藥物制放系統及生物相容性包括血液相容性,細胞相容性及抑菌性。本論文的改質方式可使果膠混摻薄膜在生醫材料的領域上有極大的潛力。


    In this study, pectin was blended with polyvinyl alcohol (PVA) or sodium alginate (Alg) and crosslinked with calcium ions into blend hydrogel membranes. The presented work was divided into three parts to study. Part I investigated the controlled release behavior and hemocompatibility of pH- and thermo-sensitivity pectin/PVA blend hydrogels. Part II was focused on the evaluation of the drug release mechanism of pH-sensitive pectin/Alg blend hydrogels in simulated physiological fluids. Part III immobilized the chitosan/hyaluronic acid/heparin multilayer on pectin/PVA /Alg blend membranes and the effect on the biocompatibility of pectin/ Alg/PVA blend membranes.
    In the first part, the pH- and temperature-dependent swelling behavior of pectin/PVA blend hydrogels was examined under pH from 2 to 12 and at temperatures from 2 to 45 °C and the enthalpy of mixing (Hmix) was investigated. The water structure in the hydrogels was measured by differential scanning calorimetry (DSC). The influence of Ca2+ content on the network structure of pectin/PVA blend hydrogels was investigated in terms of compressive elastic modulus, effective crosslinking density (νe) and the polymer–solvent interaction parameter (χ) based on the Flory theory. The loading of alizarin red S (ARS) followed the Langmuir isotherm mechanism and the release kinetics of the pectin/PVA blend hydrogels at 37 °C followed Fickian diffusion. The amount of protein adsorbed and platelets adhered on the pectin/PVA blend hydrogels were significantly curtailed with increasing pectin content, thereby showing improved blood compatibility. The pectin/PVA blend hydrogels were proven to be non- cytotoxic evaluated in vitro by L-929 fibroblast incubation.
    In the second part, pectin/Alg blend hydrogels was loaded with ampicillin to evaluate the release mechanism in simulated physiological fluids. The loading capacity of ampicillin followed the Langmuir isotherm model. The drug release of pectin/Alg blend hydrogels were performed in simulated gastric fluid (SGF, pH 1.2), simulated colonic fluid (SCF, pH 6.8) and simulated intestinal fluid (SIF, pH 7.4). The pectin/Alg blend hydrogels with higher pectin content exhibited higher drug release rate. The release rate of ampicillin in SIF was higher than that in SCF and SGF and followed a Fickian diffusion mechanism. The results showed that the release kinetics was significantly dependent on the crosslinking degree of the pectin/Alg blend hydrogels and the physiological pH. The results indicated that pectin/Alg blend hydrogels may be useful for the localized delivery of drug in the intestinal environment.
    In the last part, aiming to improve the hydrophilicity, antibacterial activity, cytocompatibility and hemocompatibility of pectin/Alg/PVA blend hydrogels, pectin/Alg/PVA blend films were treated with oxygen plasma, grafted with chitosan (CS), and followed by covalent-immobilization of either heparin (HEP) or hyaluronic acid (HA). The surface graft density of modified pectin/Alg/PVA films was detected by X-ray photoelectron spectroscopy (XPS) and dyeing. After immobilizing chitosan, pectin/PVA /Alg-CS blend films acquired antibacterial activity against Escherichia coli and Staphylococcus aureus. The adsorption of human serum albumin (HSA) and human plasma fibrinogen (HPF) on pectin/Alg/PVA-CS-HEP and pectin/Alg/PVA-CS-HA films was lower comparing to that of pectin/Alg/PVA. Moreover, HEP immobilization could effectively reduce platelet adhesion and prolong the blood coagulation time, thereby improve the blood compatibility of pectin/Alg/PVA blend films. In addition, the growth of L929 fibroblasts was improved for HEP or HA immobilized pectin/Alg/PVA, suggesting this surface modification was non-cytotoxic. Furthermore, pectin/Alg/PVA-CS-HEP and pectin/Alg/PVA-CS-HA exhibited higher cell proliferation than pectin/Alg/PVA.
    Overall result demonstrated that such an easy processing and rapid method should have good potential for modification of pectin/PVA, pectin/Alg and pectin/Alg/PVA blend hydrogels in the application of controlled drug delivery system and biocompatibility, such as cytocompatibility, hemocompatibility and antibacterial activity.

    中文摘要(Abstract) I 英文摘要 III 誌謝 VI 目錄(Table of contents) VII 圖表索引(Figures) XI 第一章 緒論(Introduction) 1 1.1 研究背景(Background) 1 1.2 研究目的(Scope and objective) 3 第二章 文獻回顧(Background) 6 2.1 水膠的定義(Hydrogels) 6 2.2 酸鹼敏感型水膠(pH-sensitivity hydrogel) 7 2.3 溫度敏感型水膠(Thermo-sensitivity hydrogel) 8 2.4 果膠(Pectin) 9 2.5 海藻酸鈉(Sodium alginate) 9 2.6 聚乙烯醇(Polyvinyl alcohol) 11 2.7 幾丁聚醣(Chitosan) 11 2.8 透明質酸(Hyaluronic acid) 13 2.9 肝素(Heparin) 14 2.10 互穿網狀高分子結構(IPN)與半互穿網狀高分子結構(Semi-IPN) 17 2.11 自由水(Free water)與結合水(Bound water) 18 2.12 彈性模數(Elastic modulus ) 19 2.13 吸附理論(Adsorption) 21 2.14 動力擴散模式(The model of release kinetics)? 22 2.15 高分子材料表面改質(Surface modification) 24 2.16 生物相容性(Biocompatibility) 26 2.17 血液相容性(Hemocompatibility) 26 2.18 血小板與凝血作用(Platelet mechanism) 27 2.19 蛋白質吸附(Protein adsorption) 29 2.20 血液學凝固(Blood coagulation) 30 2.21 活化部分凝血酶原時間(APTT) 33 第三章 實驗材料與方法(Materials and methods) 34 3.1 實驗材料 34 3.2 實驗儀器 36 3.3 實驗流程 37 3.3.1 酸鹼與溫度敏感型果膠/聚乙烯醇(Pectin/PVA)混摻水膠的實驗項目流程圖 37 3.3.2 酸鹼敏感型果膠/海藻酸(Pectin/Alg)混摻水膠的實驗項目流程圖 38 3.3.3 果膠/海藻酸/聚乙烯醇(Pectin/Alg/PVA)混摻水膠的實驗項目流程圖 39 3.3.4 CS, HEP, HA固定化於果膠/海藻酸/聚乙烯醇(Pectin /Alg /PVA)混摻水膠的製備 40 3.4 實驗原理 41 3.4.1 酸鹼與溫度敏感型果膠/聚乙烯醇(Pectin/PVA)混摻水膠的製備 41 3.4.2 酸鹼敏感型果膠/海藻酸(Pectin/Alg)混摻水膠的製備 41 3.4.3 果膠/海藻酸/聚乙烯醇(Pectin/Alg/PVA)混摻水膠的製備及CS, HEP, HA固定化於Pectin/Alg/PVA 42 3.4.4 Pectin/Alg blend hydrogels薄膜的FTIR測量 43 3.4.5 Pectin/PVA blend hydrogels 的DSC測量 44 3.4.6 Pectin/PVA blend hydrogels的彈性模數測試 44 3.4.7 茜素紅(ARS)的吸附 44 3.4.8 茜素紅(ARS)的釋放 45 3.4.9 氨比西林(Ampicillin)的吸附 45 3.4.10 氨比西林(Ampicillin)在離子溶液及模擬腸胃液(Simulated physiological fluid)的釋放 46 3.4.11 DPPH過氧化基分析 46 3.4.12 表面接枝密度(Surface graft density)的硫酸根(Sulfate)接枝率的染色測驗 47 3.4.13 胺基(Amino)接枝率的染色測驗 47 3.4.14 化學分析電子能譜(XPS) 48 3.4.15 掃描式電子顯微鏡(SEM) 48 3.4.16 接觸角測試(Contact angle measurement) 49 3.4.17 活化部分凝血酶原時間(APTT) 50 3.4.18 血小板附著評估(Evaluation of platelet adhesion) 51 3.4.19 蛋白質吸附試驗(Protein adsorption) 51 3.4.20 細胞毒性(In-vitro cytotoxicity test) 52 3.4.21 細胞增生(Cell proliferation) 53 3.4.22 抑菌性(Antibacterial activity) 54 第四章 結果與討論(Results and discussions) 56 4.1 酸鹼與溫度敏感型果膠/聚乙烯醇(Pectin/PVA)混摻水膠之血液相容性及載入釋放行為探討 56 4.1.1 Pectin/PVA blend hydrogels的鍵結水及自由水測量 56 4.1.2 Pectin/PVA blend hydrogels在不同pH值之膨潤性 57 4.1.3 Pectin/PVA blend hydrogels在不同溫度下之膨潤性 58 4.1.4 Pectin/PVA blend hydrogels的網狀結構(Network structure) 62 4.1.5 Pectin/PVA blend hydrogels的茜素紅(ARS)吸附 64 4.1.6 Pectin/PVA blend hydrogels的藥物釋放動力學分析 67 4.1.7 Pectin/PVA blend hydrogels的蛋白質吸附 70 4.1.8 Pectin/PVA blend hydrogels的血小板吸附 71 4.1.9 Pectin/PVA blend hydrogels的細胞毒性 72 4.1.10 Pectin/PVA blend hydrogels的細胞增生 73 4.2 酸鹼敏感型海藻酸/果膠(Pectin/Alg)混摻水膠模擬 腸胃道之藥物釋放行為探討 75 4.2.1 Pectin/Alg blend hydrogels的FTIR性質分析 75 4.2.2 Pectin/Alg blend hydrogels的氨比西林(Ampicillin)吸 附 76 4.2.3 Pectin/Alg blend hydrogels在鹽溶液下的釋放動力學 分析 78 4.2.4 Pectin/Alg blend hydrogels在不同pH值下的釋放動力 學分析 82 4.2.5 Pectin/Alg blend hydrogels在模擬腸胃道的釋放動力 學分析 86 4.3 改質果膠/海藻酸/聚乙烯醇(Pectin/Alg/PVA)混摻水膠之血液相容性、生物相容性與表面行為 90 4.3.1 Pectin/Alg/PVA blend hydrogels表面氧電漿處理(Oxygen plasma treatment) 90 4.3.2 Pectin/Alg/PVA blend hydrogels接枝密度的測量 92 4.3.3 Pectin/Alg/PVA blend hydrogels的X射線光電子能譜儀(XPS)表面元素分析 93 4.3.4 Pectin/Alg/PVA blend hydrogels水膠改質後之親水性 95 4.3.5 Pectin/Alg/PVA blend hydrogels的蛋白質吸附 96 4.3.6 Pectin/Alg/PVA blend hydrogels的血小板吸附(Platelet adhesion) 97 4.3.7 Pectin/Alg/PVA blend hydrogels的活化部分凝血酶原時間(Activated partial thromboplastin time, APTT) 100 4.3.8 Pectin/Alg/PVA blend hydrogels的細胞毒性 101 4.3.9 Pectin/Alg/PVA blend hydrogels的細胞增生 103 4.3.10 Pectin/Alg/PVA blend hydrogels的抑菌性 104 第五章 結論(Conclusion) 107 第六章 參考文獻(Reference) 109 附錄-已發表之期刊論文 125 作者簡介 126 圖表索引 Fig 2.1 The equilibrium swelling of pH-sensitivity hydrogel at low pH and high pH 7 Fig 2.2 Chemical structure of pectin 9 Fig 2.3 Chemical structure of sodium alginate 10 Fig 2.4 Chemical structure of polyvinyl alcohol 11 Fig 2.5 Chemical structures of chitosan 12 Fig 2.6 Chemical structures of hyaluronic acid 14 Fig 2.7 Chemical structures of heprin 15 Fig 2.8 Physical structures of IPN and semi-IPN 18 Fig 2.9 Platelet reactions to artificial surfaces 29 Fig 2.10 Mechanisms of clotting factor interaction 32 Fig 3.1 The reaction of DPPH and peroxides 47 Fig 3.2 Contact angle of a sessile drop 50 Fig 3.3 APTT test 50 Fig 4.1.1 Effect of pH at room temperature on the equilibrium swelling ratio of pectin/PVA blend hydrogels 58 Fig 4.1.2 Effect of temperature on the equilibrium swelling ratio of pectin/ PVA blend hydrogels in distilled water 60 Fig 4.1.3 The plot of ln Seq versus 1/T of pectin/PVA blend hydrogels in distilled water 61 Fig 4.1.4 The plot of Hmix (kJ/mol) versus pectin content (wt%) of pectin/ PVA blend hydrogels in distilled water 62 Fig 4.1.5 The plot of log Seq versus log G of pectin/PVA blend hydrogels 64 Fig 4.1.6 The loading of ARS by pectin/PVA blend hydrogels at room temperature 66 Fig 4.1.7 The Langmuir adsorption isotherms for pectin/PVA blend hydrogels at room temperature 66 Fig 4.1.8 Diffusion curves of ARS from the pectin/PVA blend hydrogels in distilled water at 37 °C 68 Fig 4.1.9 Diffusion coefficient curves of ARS from the pectin/PVA blend hydrogels in distilled water at 37 °C 69 Fig 4.1.10 The adsorption of albumin and fibrinogen onto the pectin/PVA blend hydrogels surfaces for 2 h-incubation time (n=5, mean±S.D.) 71 Fig 4.1.11 Comparison of platelet adhesion to various pectin/PVA blend hydrogels films after 30 and 120 min incubation with PRP containing (n=5, mean±S.D.) 72 Fig 4.1.12 In vitro cell (L929 fibroblast) culture in the extracted solution of hydrogel after 3-day culturing. Photographs of optical microscopy of (A) PVA (B)V4P1 (C) V2P3 (D) solvent (× 200) 73 Fig 4.1.13 MTT assay. Formazan absorbance at 490 nm was used as a measure of viability of L929 fibroblasts cultured (n = 5, mean±S.D.) 74 Fig 4.2.1 Infrared spectra of pectim/Alg blend hydrogels 75 Fig 4.2.2 The loading of ampicillin by the pectin/Alg blend hydrogels at room temperature 77 Fig 4.2.3 The Langmuir adsorption isotherms for the pectin/Alg blend hydrogels at room temperature 78 Fig 4.2.4 Diffusion curves of ampicillin from the pectin/alginate blend hydrogels in NaCl solution at 37 °C based on Eq. 13 80 Fig 4.2.5 Early-time diffusion coefficient curves of ampicillin from the pectin/alginate blend hydrogels in distilled water at 37 °C based on Eq. 10 81 Fig 4.2.6 Late-time diffusion coefficient curves of ampicillin from the pectin /alginate blend hydrogels in NaCl solution at 37 °C based on Eq. 12 81 Fig 4.2.7 Diffusion curves of ampicillin from the pectin/alginate blend hydrogels in pH 1.2 (SGF without pepsin) at 37 °C based on Eq. 13 85 Fig 4.2.8 Early-time diffusion coefficient curves of ampicillin from the pectin/alginate blend hydrogels in pH 6.8 (SCF without pectinase) at 37 °C based on Eq. 10 85 Fig 4.2.9 Late-time diffusion coefficient curves of ampicillin from the pectin/alginate blend hydrogels in pH 7.5 (SIF without pancreatin) at 37 °C based on Eq. 12 86 Fig 4.2.10 Diffusion curves of ampicillin from the pectin/alginate blend hydrogels in pH 1.2 (SGF with pepsin) at 37 °C based on Eq. 13 87 Fig 4.2.11 Early-time diffusion coefficient curves of ampicillin from the pectin/ alginate blend hydrogels in pH 6.8 (SCF with pectinase) at 37 °C based on Eq. 10 88 Fig 4.2.12 Late-time diffusion coefficient curves of ampicillin from the pectin /alginate blend hydrogels in pH 7.5 (SIF with pancreatin) at 37 °C based on Eq. 12. 88 Fig 4.3.1 The dependence of the peroxide surface density on the plasma treating time (n=5) 91 Fig 4.3.2 The variation of the surface density of AA with respect to the peroxide surface density 91 Fig 4.3.3 The XPS survey scan spectra of films before and after immobilizing HEP 94 Fig 4.3.4 The contact angle of pectin/Alg/PVA blend hydrogels 95 Fig 4.3.5 The adsorption of albumin and fibrinogen onto the pectin/Alg/PVA blend hydrogels film surfaces for 2 h incubation time (n=5, mean±S.D.) 97 Fig 4.3.6 Comparison of platelet adhesion after 2 h to the surface of (A) PAP (B) PAP-CS (C) PAP-CS-HEP (D) PAP-CS-HA 99 Fig 4.3.7 Comparison of platelet adhesion to various films after 30 and 120 min incubation with PRP containing (n=5, mean±S.D.) 99 Fig 4.3.8 Comparison of anti-coagulant properties of films: APTT and PT (n=5, mean±S.D.) 100 Fig 4.3.9 In vitro cell (L929 fibroblast) culture in the extracted solution of hydrogels after 3-day culturing. Photographs of optical microscopy of (A)positive control (B)solvent (C)PAP (D)PAP-CS (E)PAP -CS-HEP (F)PAP-CS -HA (× 400) 102 Fig 4.3.10 MTT assay. Formazan absorbance at 490 nm was used as a measure of viability of L929 fibroblasts cultured (n = 5, mean±S.D.) 103 Fig 4.3.11 The number of viable cells for E-coli varied with the exposure time for the pectin/Alg/PVA blend hydrogels surface 105 Fig 4.3.12 The number of viable cells for S. aureus varied with the exposure time for the pectin/Alg/PVA blend hydrogels surface 105 Fig 4.3.13 Comparison of bacterial adhesion. (A) S. aureus on PAP–HA (B) S. aureus on PAP–CS–HA (C) E. coli on PAP–HA (D) E. coli on PAP–CS–HA 106 Table 2.1 Comparison of different surface modifications 25 Table 2.2 Properties of human clotting factors 32 Table 3.1 Pectin/PVA blend hydrogels composition 41 Table 3.2 Pectin/Alg blend hydrogels composition 42 Table 4.1.1 States of water in pectin/PVA blend hydrogels estimated with DSC analysis 57 Table 4.1.2 The enthalpy of mixing (Hmix) for pectin/PVA blend hydrogels in distilled water 61 Table 4.1.3 Network parameters and polymer–solvent interaction parameter at 298 K in distilled water for the pectin/PVA blend hydrogels 63 Table 4.1.4 Langmuir parameters for pectin/PVA blend hydrogels 65 Table 4.1.5 Drug release kinetic data for pectin/PVA blend hydrogels obtained from fitting drug release experimental data in distilled water at 37 °C 69 Table 4.2.1 Langmuir parameters for the pectin/Alg blend hydrogels 77 Table 4.2.2 Kinetic parameters and diffusion coefficients of ampicillin release from the pectin/alginate blend hydrogels at 37 °C 80 Table 4.2.3 Kinetic parameters and diffusion coefficients of ampicillin release from the pectin/alginate blend hydrogels in various pH at 37 °C 84 Table 4.2.4 Kinetic parameters and diffusion coefficients of ampicillin release from the pectin/alginate blend hydrogels in stimulated physiological fluids with enzyme at 37 °C 89 Table 4.3.1 Surface density of modified pectin/Alg/PVA blend hydrogels (n=5, mean±S.D.) 93 Table 4.3.2 Elemental compositions of the modified pectin/Alg/PVA blend hydrogels surfaces with HEP immobilization 94

    [1] Y. Wang, X. Yang, H. Li, W. Tu, Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate, Polym. Degrad. Stab. 2006, 91, 2408-2414
    [2] R. Dave, D. Madamwar, Esterification in organic solvents by lipase immobilized in polymer of PVA–alginate–boric acid, Process. Biochem. 2006, 41, 951–955.
    [3] J.B. Leacha, C.E. Schmidt, Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds, Biomaterials 2005, 26, 125–135.
    [4] H. Nagahama, T. Kashiki, N. Nwe, R. Jayakumar, T. Furuike, H. Tamura Preparation of biodegradable chitin/gelatin membranes with GlcNAc for tissue engineering applications, Carbohyd. Polym. 2008, 73, 456–463.
    [5] F. Atyabi, S. Majzoob, M. Iman, M. Salehi, F. Dorkoosh, In vitro evaluation and modification of pectinate gel beads containing trimethyl chitosan, as a multi-particulate system for delivery of water-soluble macromolecules to colon, Carbohyd. Polym. 2005, 61, 39–51.
    [6] J.O. Kim, J.K. Park, J.H. Kim, S.G. Jin, C.S. Yong, D.X. Li, J.Y. Choi, J.S. Woo, B.K. Yoo, W.S. Lyoo, J.A. Kim, H.G. Choi, Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone, Int. J. Pharm. 2008, 359, 79–86.
    [7] A. Sintov, N. Di-Capua, A. Rubinstein, Cross-linked chondroitin sulphate: characterization for drug delivery purposes, Biomaterials 1995, 16, 4734-4787.
    [8] M. George, T.E. Abraham, Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review, J. Contr. Release 2006, 114, 1–14.
    [9] Z. Li, H.R. Ramay, K.D. Hauch, D. Xiao, M. Zhang, Chitosan–alginate hybrid scaffolds for bone tissue engineering, Biomaterials 2005, 26, 3919–3928.
    [10] L. Wang, R.M. Shelton, P.R. Cooper, M. Lawson, J.T. Triffitt, J.E. Barrale, Evaluation of sodium alginate for bone marrow cell tissue engineering, Biomaterials 2003, 24, 3475–3481.
    [11] M.M. Stevens, H.F. Qanadilo, R. Langer, V. Prasad, A rapid-curing lginate gel system: utility in periosteum-derived cartilage tissue engineering, Biomaterials 2004, 25, 878–894.
    [12] C.J. Knilla, J.F. Kennedy, J. Mistry, M. Miraftab, G. Smart, M.R. Groocock, .J. William. Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings, Carbohyd. Polym. 2004, 55, 65–76.
    [13] B. Balakrishnan, M. Mohanty, P.R. Umashankar, A. Jayakrishnan, Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin, Biomaterials 2005, 26, 6335-6342.
    [14] T. Hashimotoa, Y. Suzuki, M. Tanihara, Y. Kakimaru, K. Suzuki, Development of alginate wound dressings linked with hybrid peptides derived from laminin and lastin, Biomaterials 2004, 25, 1407-1414.
    [15] T. Haider, Q. Husain, A layered calcium alginate–starch beads immobilized galactosidase as a therapeutic agent for lactose intolerant patients, Int. J. Pharm. 2008, 359, 1–6.
    [16] T.I. Zaghloul, H.M. Hendawy, S. El Assar, M.H. Mostafa, Enhanced stability of the cloned Bacillus subtilis alkaline protease gene in alginate-immobilized B. subtilis cell, Enzyme Microb. Technol . 2002, 30, 862-866.
    [17] S. Ates, E Cortenlioglu, E. Bayraktar, U. Mehmetoglu, Production of l-DOPA using Cu-alginate gel immobilized tyrosinase in a batch and packed bed reactor, Enzyme Microb. Technol . 2007, 40, 683-687.
    [18] A. Idris, W. Suzana, Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii, Process. Biochem. 2006, 41, 1117-1123.
    [19] H.F. Liang, M.H. Hong, R.M. Ho, C.K. Chung, Y.H. Lin, C.H. Chen, H.W. Sung, Novel method using a temperature-sensitive polymer(methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel, Biomacromolecules 2004, 5, 1917–1925.
    [20] L.S. Liu, M.L. Fishman, J. Kost, K.B. Hicks, Pectin-based systems for colon-specific drug delivery via oral route, Biomaterials 2003, 24, 3333–3343.
    [21] C.Y. Yu, B.C. Yin, W. Zhang, S.X. Cheng, X.Z. Zhang, R.X. Zhuo, Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property, Colloids. Surf. B: Biointerfaces 2009, 68, 245–249.
    [22] M. George, T.E. Abraham, pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs, Int. J. Pharm. 2007, 335, 123–129.
    [23] Y.H. Lin, H.F. Liang, C.K. Chung, M.C. Chen, H.W. Sung, Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 2005, 26, 2105–2113.
    [24] T. Ugurlu, M. Turkoglu, U.S. Gurer, B.G. Akarsu, Colonic delivery of compression coated nisin tablets using pectin/HPMC polymer mixture, Eur. J. Pharm. Biopharm. 2007, 67, 202–210.
    [25] T.F. Vandamme, A. Lennourry, C. Charrueau, J.C. Chaumeil, The use of polysaccharide to target drugs to the colon, Carbohyd. Polym. 2002, 28, 219–231.
    [26] O. Chambin, G. Dupuis, D. Championb, A. Voilley, Y. Pourcelot, Colon- specific drug delivery: Influence of solution reticulation properties upon pectin beads performance, Int. J. Pharm. 2006, 32, 89–93.
    [27] M. Orlu , E. Cevher, A. Araman, Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges, Int. J. Pharm. 2006, 318, 103–117.
    [28] J. Berger, M. Reist, J.M. Mayer, O. Felt, R. Gurny, Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications, Eur. J. Pharm. Sci. 2004, 57, 35–52.
    [29] C.M. Silva, A.J. Ribeiro, D. Ferreira, F. Veiga, Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation, Eur. J. Pharm. Sci. 2006, 29, 148–159.
    [30] S.H. Ajili, N.G.. Ebrahimi, M.T. Khorasani, Study on thermoplastic polyurethane/polypropylene (TPU/PP) blend as a blood bag material, J. Appl. Polym. Sci. 2003, 89, 2496-506.
    [31] J.E. Puskas, Y. Chen, Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement, Biomacromolecules 2004, 5, 1141-1154.
    [32] I.K. Kang, O.H. Kwon, Y.M. Lee, Y.K. Sung, Preparation and surface characterization of function group-grafted and heparin-immobilized polyurethane prepared by plasma glow discharge, Biomaterials 1996, 17, 841-847.
    [33] P. Olsson, J. Sanchez, T.E. Mollnes, J. Riesenfeld, On the blood compatibility of end-point immobilized heparin, J. Biomed. Sci. Polym. Ed. 2000, 11, 1261- 1273.
    [34] I.K. Kang, O.H. Kwon, M.K. Kim, Y.M. Lee, Y.K. Sung, In vitro blood compatibility of functional group-grafted and heparin immobilized polyurethanes prepared by plasma grow discharge, Biomaterials 1997, 18, 1099-1107.
    [35] H. Baumann, A. Kokott, Surface modification of the polymers present in a polysulfone hollow fiber hemodialyzer by covalent binding of heparin or endothelial cell surface heparan sulfate: Flow characteristics and platelet adhesion, J. Biomed. Sci. Polym. Ed. 2000, 11, 245-272.
    [36] M. Goosen, M.W. Sefton, Inactivation of thrombin by antithrombin III on a heparinized biomaterial, Thromb. Res. 1980, 20, 534-554.
    [37] M.C. Yang, W.C. Lin, Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate, Polym. Adv. Technol. 2003, 14, 103–113.
    [38] W.C. Lin, D.G. Yu, M.C. Yang, Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate, Colloids. Surf. B: Biointerfaces 2005, 44, 82–92.
    [39] C.C. Lin, M.C. Yang, Cholesterol oxidation using hollow fiber dialyzer immobilized with cholesterol oxidase: effect of storage and reuse, Biomaterials 2003, 24, 549-557.
    [40] T.Y. Liu, W.C. Lin, L.Y. Huang, S.Y. Chen, M.C. Yang, Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane, Biomaterials 2005, 26, 1437-1444.
    [41] W.C. Lin, T.Y. Liu, M.C. Yang, Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate, Biomaterials 2004, 25, 1947-1957.
    [42] F.C. Kung, M.C. Yang, Effect of conjugated linoleic acid immobilization on the hemocompatibility of cellulose acetate membrane, Colloids. Surf. B: Biointerfaces 2006, 47, 36–42.
    [43] K. Miura, N. Kimura, H. Suzuki, Y. Miyashita, Y. Nishio, Thermal and viscoelastic properties of alginate/poly(vinyl alcohol) blends cross-linked with calcium tetraborate, Carbohyd. Polym. 1999, 39, 139–144.
    [44] L. Wu, W. Forsling, A. Holmgren, Surface complexation of calcium minerals in aqueous solution, J. Colloid Interface Sci. 1999, 39, 139–144.
    [45] H. Park, K. Park, S.W. Shalaby, Biodegradable Hydrogels for Drug Delivery. Tecknomic Publishing Company, Lancaster, PA, 1993, chapters 2 and 8.
    [46] T. Boontheekul, H.J. Kong, D.J. Mooney, Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution, Biomaterials, 2005, 26, 2455–2465.
    [47] L.C. Winterton, J.D. Andrade, J. Feijen, S.W. Kim, Heparin interaction with protein with protein-adsorbed surfaces, J. Colloid Interface Sci. 1986, 111, 314–324.
    [48] G. Sundheim, G.D. Olivecroma, Lipolysis in milk induced by cooling or by heparin, J. Dairy Sci. 1985, 68, 589-593.
    [49] K.D. Park, S.W. Kim, Heparin immobilization onto segmented polyurethane: effect of hydrophilic spacers, J. Biomed. Mater. Res. 1988, 22, 977-984.
    [50] P. Bulpitt, D. Aeschlimann, .New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels, J. Biomed. Mater. Res. 1999, 47, 152-169.
    [51] S. Oerther, H.L. Gall, E. Payan, F. Lapicque, N. Presle, P. Hubert, J. Dexheimer, P. Netter, F. Lapicque, Hyaluronate-alginate gel as novel biomaterial mechanicl properties and formation mechanism, Biotechnol. Bioeng. 1999, 63, 206-215.
    [52] Y.S. Choi, S.R. Hong, Y.M. Lee, K.W. Song, M.H. Park, Studies on gelatin-containing artificial skin:Ⅱ.Preparation and characterization of cross- linked geltin-hyaluronate sponge, J. Biomed. Mater. Res. (Appl. Biomater.) 1999, 48, 631-639.
    [53] O. Wichterle, D. Lím, Hydrophilic gels for biological use, Nature 1960, 185, 117-118
    [54] A.M. Atta, K.F. Arndt, Temperature and pH sensitive ionic hydrogels based on new crosslinkers, Polym. Adv. Technol. 2005, 16, 442–450.
    [55] Y. Lee, D.N. Kim, D. Choi, W. Lee, J. Park, W.G. Koh, Preparation of interpenetrating polymer network composed of poly(ethylene glycol) and poly(acrylamide) hydrogels as a support of enzyme immobilization, Polym. Adv. Technol. 2008, 18, 852–858.
    [56] J. Chen, M.Z. Liu, S.P. Jin, H.L. Liu, Synthesis and characterization of κ-carrageenan/poly(N,N-diethylacrylamide) semi-interpenetrating polymer network hydrogels with rapid response to temperature, Polym. Adv. Technol. 2008, 19, 1656–1663.
    [57] C. Xiao, M. Yang, Controlled preparation of physical cross-linked starch-g-PVA hydrogel, Carbohyd. Polym. 2006, 64, 37–40.
    [58] C.T. Lee, P.H. Kung, Y.D. Lee, Preparation of poly(vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohydr. Polym. 2005, 61, 348–354.
    [59] W.C. Lin, D.G. Yu, M.C. Yang, Blood compatibility of novel poly(γ-glutamic acid)/polyvinyl alcohol hydrogels. Colloids. Surf. B: Biointerfaces 2006, 47, 43–49.
    [60] B. Tasdelen, N. Kayaman-Apohan , O. Guven, B.M. Baysal, Investigation of drug release from thermo- and pH-sensitive poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels, Polym. Adv. Technol. 2004, 15, 528–532.
    [61] T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: Progress and challenges, Polymer 2008, 49, 1993-2007.
    [62] Y.Y. Liu, W.Q. Liu, W.X. Chen, L. Sun, G.B. Zhang, Investigation of swelling and controlled-release behaviors of hydrophobically modified poly(methacrylic acid) hydrogels, Polymer 2007, 48, 2665–2671.
    [63] G.U. Ostrovidova, A.V. Makeev, M.M. Shamtsian, Polyfunctional film coatings for medical use, J. Mater. Sci. Eng. 2003, 23, 545–550.
    [64] M. Ali, S. Horikawa, S. Venkatesh , J. Saha, J.W. Hong, M.E. Byrne, Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow, J. Contr. Release 2007, 124, 154-162.
    [65] P.J. Flory, Principles of polymer chemistry, Cornell University Press: Ithaca, NY, 1953, Chapter 11 and chapter 13.
    [66] T. Coviello, P. Matricardi, C. Marianecci, F. Alhaique, Polysaccharide hydrogels for modified release formulations, J. Contr. Release 2007, 119, 5–24.
    [67] A.K. Bajpai, S.K. Shukla, S. Bhanu, S. Kankane, Responsive polymers in controlled drug delivery, Progr. Polym. Sci. 2008, 33, 1088-1118.
    [68] Y.H. Base, pH-induced volume-phase iransition of hydrogels containing sulfonamide side group by reversible crystal formation, Macromolecules, 2001, 34, 8173.
    [69] X.Z. Zhang, Y.Y. Yang, T.S. Chung, K.K. Ma, Fabrication and characterization of vast response poly(N-isopropyl acrylamide) hydrogels, Langmuir 2001, 17, 6094–6099.
    [70] K.S. Soppimath, A.R. Kulkarni, T.M. Aminabhavi, Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems: preparation and characterization, J. Contr. Release 2001, 75, 331-345
    [71] N.C. González, I.W. Kellaway, H.B. Fuente, S.A. Igea, B.D. Charro, F. Espinar, J.B. Méndez, Design and evaluation of buccoadhesive metoclopramide hydrogels composed of poly(acrylic acid) crosslinked with sucrose, Int. J. Pharm. 1993, 100, 65-70.
    [72] B.C. CAnderson, S.M. Cox, P.D. Bloom, V.V. Sheares, S.S. Mallapragada, Synthesis and characterization of diblock and gel-forming pentablock copolymers of tertiary amine methacrylates, poly(ethylene glycol), and poly(propylene glycol), Macromolecules 2003, 36, 1670-1676.
    [73] A.B. Scranton, N.A. Peppas, Modern Hydrogel Delivery Systems-Preface, Adv. Drug Delivery Rev. 1993, 11, 1-2.
    [74] E.S. Gil, S.M. Hudson, Stimuli-responsive polymers and their bioconjugates, Progr. Polym. Sci. 2004, 29, 173–222.
    [75] Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug Delivery Rev. 2001, 53, 321-339.
    [76] J. Heiko, L. Vander, H. Sebastiaan, O. Wonter, B. Piet, Stimulus-sensitive hydrogels and their application in chemical (micro) analysis, Royal. Soc. Chem. 2003, 128, 325–331.
    [77] J. Zhang, N.A. Peppas, Synthesis and characterization of pH- and temperature- sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks, Macromolecules 2000, 33, 102-107.
    [78] J.T. Zhang, S.X. Cheng, R.X. Zhuo, Preparation of macroporous poly(N-iso propylacrylamide) hydrogel with improved temperature sensitivity, J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2390-2392.
    [79] A. Tsoga, R.K. Richardson, E.R. Morris, Role of cosolutes in gelation of high methoxy pectin. Part 1.Comparison of sugars and polyols, Food Hydrocolloids 2004, 18, 907-919.
    [80] M. Marudova, A.J. MacDougall, S.G. Ring, Pectin–chitosan interactions and gel formation, Carbohyd. Res. 2004, 39, 1933–1939.
    [81] I. Braccini, S. Perez, Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg box model revisited. Biomacromolecules 2001, 2, 1089–1096
    [82] Y. Fang, S. Al-Assaf, G.O. Phillips, K. Nishinari, T. Funami, P.A.Williams, Binding behavior of calcium to polyuronates: Comparison of pectin with alginate. Carbohyd. Polym., 2008, 72, 334–341.
    [83] J.L. Drurya, R.G. Dennisb, D.J. Mooneya, The tensile properties of alginate hydrogels, Biomaterials 2004, 25, 3187–3199.
    [84] D.A. Rees, E.J. Welsh, Secondary and tertiary structure of polysaccharides in solution and gels, Angew. Chem., Int. Ed. Engl. 1997, 16, 214–224.
    [85] D.A. Rees, Polysaccharide shapes and their interactions-Drug encapsulation in some recent advances. Pure Appl. Chem. 1981, 53, 1–14.
    [86] A. Idris, N. Zain, M.S. Suhaimi, Immobilization of Baker’s yeast invertase in PVA–alginate matrix using innovative immobilization technique, Process. Biochem. 2008, 43, 331–338.
    [87] D. Ogomi, T. Serizawa, M. Akashi, Controlled release based on the dissolution of a calcium carbonate layer deposited on hydrogels, J. Control. Release 2005, 103, 315–323.
    [88] A. Chan, T. Becker, R.J. Neufeld, Subtilisin absorptive encapsulation and granulation, Process. Biochem. 2005, 40, 1903–1910.
    [89] R. Muzzarelli, Chitosan, in: R. Muzzarelli (Ed.), Natural Chelating Polymers, Pergamon Press, Oxford, 1973, pp. 144–176.
    [90] K. Kojima, Y. Okamoto, K. Miyatake, Y. Tamai, Y. Shigemasa, S. Mhigemasa, Optimum of dose chitin and chitosan for organization of non-woven fabric in the subcutaneous tissue, Carbohyd. Polym. 2001, 46, 235–239.
    [91] H. Ueno, H. Yamada, I. Tanaka, N. Kaba, M. Matsuura, M. Okumura, T. Kadosawa, T. Fujinaga, Accelerating effect of chitosan for healing at early phase of experimental open wound in dogs, Biomaterials 1999, 20, 1407–1414.
    [92] H. Onishi, Y. Machida., Biodegradation and distribution of water soluble chitosam in mice, Biomaterials 1999, 20,175-182.
    [93] S. Hirano, Y. Noishiki, The blood compatibility of chitosan and N- acylchitosans, J. Biomed. Mater. Res. 1985, 19, 413-417.
    [94] P.A. Sandford, Chitosan:commercial uses and potential applications. In Chitin and Chitosna, Ed by S.B. Gudmund, T. Anthonsen, P. Sandford, London and New York:Elsevier Applied Science,1988, pp.51-69.
    [95] S. Lyubina, Y. Strelina, I.A. Nudga, Y.A. Plisko, I.N. Bogatova, Flow birefringence and viscosity of chitosan solution in acetic acid of various ionic strengths, Polym. Sci. 1983, 25, 1964–1982.
    [96] N.R. Sudarshan, D.G. Hoover, D. Knorr, Antibacterial action of chitosan, Food Biotechnol. 1992, 6, 257–272.
    [97] Y.C. Chung, Y.P. Su, C.C. Chen, J.I. Guang, H. L.Wang, J.C. Wu, J.G. Lin, Relationship between antibacterial activity of chitosan and surface characteristics of cell wall, Acta Pharmcol. Sin. 2004, 25, 932–936.
    [98] P. Prehm, Hyaluronan, in: S. De Baets, E.J. Vandamme, A. Steinbüchel (Eds.), Biopolymers, vol. 5, Wiley-VCH, Weinheim, 2002, pp. 379–406.
    [99] M. Morra, Engineering of biomaterials surfaces by hyaluronan, Biomacromolecules 2005, 6, 1205–1223
    [100] P. Bulpitt, D. Aeschlimann, New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels, J. Biomed. Mater. Res. 1999, 47, 152-169.
    [101] D.C. West, I.N. Hampson, F. Arnold, S. Kuman, Angiogenesis induced by degradation products of hyaluronic acid, Science 1985, 228, 1324–1326.
    [102] A. Denuziere, D. Ferrier, O. Damour, A. ,Domard, Chitosan-chondroitin Sulfate and chitosan-hyaluronate polyelectrolyte complexes:biological properties, Biomaterials 1998, 19,1275-1285.
    [103] E.D. Korn, Method of Biochemical Analysis, Interscience publisher, N.Y.- London, 1959.
    [104] S. Budavari, M.J. O’Neil, A. Smith, P.E. Heckelman, J.F. Kinneary, The merck index: twelfth edition, N. Y., 1996.
    [105] E.G.V. Percival, Structure carbohydrate chemistry, Eurasia Co., Taipei, 1st edition, 1965, 302-326.
    [106] G. Rollason, M.V. Sefton, Inactivation of thrombin in heparin-PVA coated tubes. J. Biometer. Sci. Polym. Ed. 1998, 1, 31–41.
    [107] Y. Byun, Binding kinetics of thrombin and antithrombin III with immobilized heparin using a spacer. ASAIO J. 1992, 38, 649–653.
    [108] G. Nowak, Anticoagulation with r-hirudin in regular hemodialysis with heparin -induced thrombocytopenia (HIT II), Wien Klin Wochenschr 1997, 109, 343-5.
    [109] B. Casu, Structure and biological activity of heparin, Adv. Carbohyd. Chem. Biochem. Academic Press Inc., N.Y., 1985, 43, 127-134.
    [110] F. D. Thomas, D. A. Dolowitz, Physiologic action of heparin not related to blood clotting, Amer. J. Cardiol. 1924, 14, 18-24.
    [111] P.B. Joseph, R.H. Smart, Heparin in the treatment of chronic obstructive bronchopulmonary disease, Amer. J. Cardiol. 1964, 14, 25-28.
    [112] M. Ilavsky, G. Mamythekov, L. Hanykova, K. Dusek, Phase transition in swollen gels 31. Swelling and mechanical behaviour of IPN composed of poly(1-vinyl 2-pyrrolidone) and poly(acrylamide) in water/acetone mixture, Eur. Polym. J. 2002, 38, 875–883.
    [113] J. Zhang, N.A. Peppas, Morphology of poly(methacrylic acid)/poly (N-iso propyl acrylamide) interpenetrating polymer networks, J. Biomater. Sci. Polym. Ed. 2002, 13, 511–525.
    [114] S.J. Kim, S.J. Park, S.I. Kim, Swelling behavior of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and chitosan, React. Funct. Polym. 2003, 55, 53–59.
    [115] S.J. Kim, C.K. Lee, Y.M. Lee, I.Y. Kim, S.I. Kim, Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid–poly(vinyl alcohol) interpenetrating polymer networks, React. Funct. Polym. 2003, 55, 291–298.
    [116] J. Huang, X. Wang, X. Yu, Solute permeation through the polyurethane- NIPAAm hydrogel membranes with various cross-linking densities, Desalination 2006, 192, 125–131.
    [117] P. Chivukula, K. Dusek, D. Wang, M. Duskova-Smrckova, P. Kopeckova, J. Kopecek, Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials 2006, 27, 1140–1151.
    [118] A. Emileh, E. Vasheghani-Farahani, M. Imani, Swelling behavior, mechanical properties and network parameters of pH- and temperature-sensitive hydrogels of poly((2-dimethyl amino) ethyl methacrylate-co-butyl methacrylate). Europ. Polym. J. 2007, 43, 1986–1995.
    [119] H.C. Chiu, Y.F. Lin, Y.H. Hsu, Effects of acrylic acid on preparation and swelling properties of pH sensitive dextran hydrogels, Biomaterials 2002, 23, 1103–1112.
    [120] G. Bayramoglu, E. Yal¸ M.Y. Arıc, Characterization of polyethylenimine grafted and Cibacron Blue F3GA immobilized poly(hydroxyethylmethacrylate-co -glycydylmethacrylate) membranes and application to bilirubin removal from human serum, Colloids. Surf. B: Biointerfaces 2005, 264, 195–202.
    [121] H. Kasgoz, Aminofunctionalized acrylamide–maleic acid hydrogels: Adsorption of indigo carmine, Colloids. Surf. A: Physicochem. Eng. Aspects 2005, 266, 44–50.
    [122] D. Solpan, M. Sen, Z. Kolge, O. Guven, Adsorption of Apollo reactive dyes on poly(N,N dimethylamino ethylmethacrylate) hydrogels, Radiat. Phys. Chem. 2008, 77, 428–433.
    [123] I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc. 1917, 39, 1848–1906.
    [124] H. Hiratani, C. Alvarez-Lorenzob, The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems, Biomaterials 2004, 25, 1105–1113.
    [125] J. Crank, The Mathematics of Diffusion. Oxford University Press, Oxford, London, 1975, chapters 4 and 10.
    [126] P.L. Ritger, N.A. Peppas, A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in form of slabs, sphere, cylinders or discs, J. Control. Release 1987, 5, 23–36.
    [127] P.L. Ritger, N.A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, J. Control. Release 1987, 5, 37–42.
    [128] H. Park, K. Park, S.W. Shalaby, Biodegradable Hydrogels for Drug Delivery, Tecknomic Publishing Company: Lancaster, PA, 1993, Chapter 2 and chapter 8.
    [129] 高正雄譯着,LSI時代-電漿化學,1999.
    [130]. D.L. Coleman, R.N. King, J.D. Andrade, The foreign body reaction: a chromic inflammatory response, J. Biomed. Mater. Res. 1974, 8, 199-211.
    [131] S.D. Johnson, J. M.Anderson, R.E. Maechant, Biocompatibility studies on plasma polymerized interface materials encompassing both hydrophobic and hydrophilic surfaces, J. Biomed Mater, Res, 1992, 26, 915-941.
    [132] Y.Ikada, Membrances as Biomaterial, Polym. J. 1991, 23,551-560.
    [133] K. Fujimoto, M. Minato, H. Tadokoro, Y. Ikada, Platelet deposition onto polymeric surfaces during shunting, J. Biomed Mater, Res. 1993, 27, 335-348.
    [134] Y.Ikada, Blood-compatible polymers, Adv. Polym. Sci. 1984, 57, 104-140.
    [135] S.E. Lux, T.P. Stossel, Blood, Principles and Practice of Haematology, W.B. Saunders Co., Philadelphia, 1995.
    [136] 何敏夫,凝固作用,血液學,合記出版社,台北,2001,509-528.
    [137] J.H. Elam, H. Nygren, Adsorption of coagulation proteins from whole blood on to polymer materials: Relation to platelet activation, Biomaterials 1992, 13, 3-8.
    [138] I. Dion, C. Baquey, B. Candelon, J.R. Monties, Hemocompatibility of titanium nitride, Int. J. Artif. Organs. 1992, 15, 617-621.
    [139] S.K. Bajpai, R. Tankhiwale, Investigation of water uptake behavior and stability of calcium alginate/chitosan bi-polymeric beads: Part-1, React. Funct. Polym. 2006, 66, 645–658.
    [140] H.K. Ju, S.Y. Kim, Y.M. Lee, pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide), Polymer 2001, 42, 6851–6857.
    [141] D.E. Rodríguez, J. Romero-García, E. Ramírez-Vargas, A. S. Ledezma-Pérez, E. Arías-Marín, Synthesis and swelling characteristics of semi-interpenetrating polymer network hydrogels composed of poly(acrylamide) and poly(γ-glutamic acid), Mater. Lett. 2006, 60, 1390–1393.
    [142] X. Li, W. Wu, J. Wang, Y. Duan, The swelling behavior and network parameters of guar gum/poly(acrylic acid) semi-interpenetrating polymer network hydrogels, Carbohydr. Polym. 2006, 66, 473–479.
    [143] W. Xue, S. Champ, M.B. Huglin, Network and swelling parameters of chemically crosslinked thermoreversible hydrogels, Polymer 2001, 42, 3665–3669.
    [144] M. M. Amiji, Surface modification of chitosan membranes by complexation- interpenetrating of anionic polysaccharides for improved blood compatibility in hemodialysis, J. Biomed. Sci. Polym. Ed. 1996, 8, 281.
    [145] K. Ishihara, K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization, Biomaterials 1999, 20, 1545-1551.
    [146] J. Aburto, A. Mendez-Orozco, S.L. Borgne, Hydrogels as adsorbents of organosulphur compounds currently found in diesel, Chem. Eng. Process. 2004, 43, 1587–1595.
    [147] R.Y.M. Huang, R. Pol, G.Y. Moon, Characteristic of sodium alginate membrane for the pervaporation of dehydration of ethanol-water and isopropanol-water mixtures, J. Membr. Sci. 1999, 165, 101–113.
    [148] S.C. Wang, B.H. Chen, L.F. Wang, J.S. Chen, Characterization of chondroitin sulfate and its interpenetrating polymer network hydrogels for sustained-drug release, Int. J. Pharm. 2007, 329, 103–109.
    [149] A.C. Queiroz, J.D. Santos, F.J. Monteiro, I.R. Gibson, J.C. Knowles, Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites, Biomaterials 2001, 22, 1393–1400.
    [150] A.K. Anal, W.F. Stevens, Chitosan–alginate multilayer beads for controlled release of ampicillin, Int. J. Pharm. 2005, 290, 45–54.
    [151] B. Wu, D. Deng, Y. Lu, W. Wu, Biphasic release of indomethacin from HPMC/pectin/calcium matrix tablet: II. Influencing variables, stability and pharmacokinetics in dogs, Eur. J. Pharm. Biopharm. 2008, 69, 294–302.
    [152] M.A. da Silva, A.C.K. Bierhalz, T.G. Kieckbusch, Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration, Carbohyd. Polym. 2009, 77, 736–742.
    [153] D.G. Yu, W.C. Lin, C.H. Lin, Y.H Yeh, M.C. Yang, Construction of Antithrombogenic Polyelectrolyte Multilayer on Thermoplastic Polyurethane via Layer-By-Layer Self-Assembly Technique, J. Biomed. Mater. Res. (Appl. Biomater.) 2007, 83, 105-113.
    [154] F. Biguccia, B. Luppia, T. Cerchiarac, M. Sorrenti, G. Bettinetti,L. Rodrigueza, V. Zecchia, Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin, Eur. J. Pharm. Sci. 2008, 35, 435–441.
    [155] J. Berger, M. Reist, J.M. Mayer, O. Felt, N.A. Peppas, R. Gurny, Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications, Eur. J. Pharm. Biopharm. 2004, 57, 19–34.
    [156] T. Basinska, Adsorption studies of human serum albumin, human γ- globulin and human fibrinogen on the surface of P(S/PGL) microsphere, J. Biomater. Sci. Polym. Ed. 2001, 12, 1359–1371.
    [157] H.W. Sung, C.N. Chen, R.N. Huang, J.C. Hsu, W.H. Chang, In vitro surface characterization of a biological patch fixed with a naturally occurring crosslinking agent, Biomaterials 2000, 21, 1353-1362.
    [158] Y.C. Wang, M.C. Lin, D.M. Wang, H.J. Hsieh, Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering, Biomaterials 2003, 24, 1047-1057.
    [159] D.G. Yu, C.H. Jou, W.C. Lin, M.C. Yang, Surface modification of poly(tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer, Colloids. Surf. B: Biointerfaces 2007, 54, 222–229.
    [160] G. Chen, Y. Ito, Y. Imanishi, A. Magnami, S. Lamponi, R. Barbucci, Photoimmobilization of sulfated hyaluronic acid for antithrombogenicity, Bioconjugate. Chem. 1997, 8, 730-734.
    [161] D.G. Yu, W.C. Lin, C. H. Lin, M.C. Yang, Cytocompatibility and Antibacterial Activity of a PHBV Membrane with Surface-Immobilized Water-Soluble Chitosan and Chondroitin-6-sulfate, Macromolecules Biosci. 2006, 6, 348-357.
    [162] Y.M. Chen, Y.C. Chung, L.W. Wang, K.T. Chen, S.Y. Li, Antibacterial properties of chitosan in waterborne pathogen, J. Environ. Sci. Health. 2002, A37, 1379–1390.
    [163] G.H. Wang, Inhibition and inactivation of five species of foodborne pathogens by chitosan, J. Food Protect. 1992, 55, 916–925.

    無法下載圖示 全文公開日期 2014/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE