簡易檢索 / 詳目顯示

研究生: 陳天民
Kuppachari - Rajendran
論文名稱: SYNTHESIS AND CHARACTERIZATION OF HIGHLY TRANSPARENT AND ORGANOSOLUBLE POLYIMIDES AND POLYAMIDES DERIVED FROM 2,2’-DISUBSTITUTED-4,4’-OXYDIANILINE
SYNTHESIS AND CHARACTERIZATION OF HIGHLY TRANSPARENT AND ORGANOSOLUBLE POLYIMIDES AND POLYAMIDES DERIVED FROM 2,2’-DISUBSTITUTED-4,4’-OXYDIANILINE
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 王英靖
Ing-Jing Wang
李宗銘
Tzong-Ming Lee
楊銘乾
Ming-Chien Yang
游進陽
Chin-Yang Yu
陳建光
Jem-Kun Chen
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 128
外文關鍵詞: polyamides
相關次數: 點閱:152下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • In order to improve the optical transparency and organosolubility of aromatic
    polyimides and polyamides derived from 4,4’-oxydianiline (4,4’-ODA), new aromatic diamine 2,2’-bis[(p-trifluoromethyl)phenyl]-4,4’-oxydianiline (BTFP-ODA) was synthesized in four steps from 4,4’-ODA as the starting material, followed by oxidation, iodination, reduction and Suzuki coupling. New polyimides containing bulky p-trifluoromethylphenyl substitutents with inherent viscosities of 0.53~1.26 dL/g were prepared by reacting the diamine with six commercially available aromatic dianhydrides via a one-step hightemperature polycondensation procedure. Polyimides contained bulky ptrifluoromethylphenyl substitutents that would hinder the chain packing and increase the free volume. Most of the resulting polyimides showed enhanced solubility in common organic solvents compared with those corresponding polyimides derived from 4,4’-ODA. Especially, polyimide derived from BTFP-ODA and rigid pyromellitic dianhydride (PMDA) was also soluble in DMF, DMAc, DMSO, NMP and m-cresol at room temperature. Transparent, flexible and tough films can be obtained by casting from their DMAc or m-cresol solutions. These films had the UV onset wavelengths in the range of 354~391 nm and the wavelengths
    at 80% transmission of 445~523 nm, indicating high optical transparency. They also exhibited good thermal stability with glass transition temperatures in the range of 260~306 °C. The decomposition temperatures of these polyimides at 5% weight loss under nitrogen were 534~609 °C. In addition, the polyamides with inherent viscosities of 0.55~0.89 dL/g were prepared by the direct polycondensation reaction of this diamine with various aromatic dicarboxylic acids. The polyamides also exhibited good optical transparency in visible light
    region and showed excellent solubility in organic solvents such as DMSO, DMAc, DMF and NMP at room temperature. They also exhibited good thermal stability with glass transition temperatures in the range of 243~284 °C. The decomposition temperatures of these polyamides at 5% weight loss under nitrogen were 418~445 °C. All of these polymers showed amorphous nature evidenced by wide angle X-ray diffraction. High optical transparency and excellent solubility combined with good thermal stability make these
    polymers attractive for potential soft electronics applications.

    TABLE OF CONTENTS ABSTRACT......................................iv ACKNOWLEDGEMENTS..............................vii LIST OF TABLES.................................xi LIST OF FIGURES...............................xii LIST OF SCHEMES..............................xiii CHAPTER 1 INTRODUCTION..........................1 1.1 High-performance polymers...................1 1.2 Preparation of aromatic polyimides..........3 1.3 Preparation of aromatic polyamides......................................12 1.4 Suzuki coupling........................................................................................................18 1.5 Modification of aromatic polyimides and polyamides .............................................21 1.6 Dimensional stability and charge transfer complex..................................................44 1.7 Polymers in Electronics Packaging...........................................................................45 1.8 Objective and outline of the present investigation....................................................46 CHAPTER 2 EXPERIMENTAL..........................................................................................48 2.1 Instrumentation..........................................................................................................48 2.2 Materials....................................................................................................................50 2.3 Monomer synthesis...................................................................................................52 2.3.1 Synthesis of p-(trifluoromethyl)phenylboronic acid........................................52 2.3.2 Synthesis of 4,4’-dinitrodiphenylether.......................................................... ..52 2.3.3 Synthesis of 2,2’-diiodo-4,4’-dinitrodiphenylether..........................................53 2.3.4 Synthesis of 2,2’-diiodo-4,4’-oxydianiline......................................................54 2.3.5 Synthesis of 2,2’-bis[p-(trifluoromethyl)phenyl]-4,4’-oxydianiline................55 2.4 Polymer synthesis......................................................................................................56 2.4.1 Polyimide synthesis..........................................................................................56 2.4.2 Polyamide synthesis.........................................................................................57 2.5 Preparation of polymer films.....................................................................................58 2.5.1 Preparation of polyimide films.........................................................................58 2.5.2 Preparation of polyamide films........................................................................58 2.6 Measurements……………………………………………………………………...59 CHAPTER 3 RESULTS AND DISCUSSION.....................................................................61 3.1 Highly Transparent and Organosoluble Polyimides Derived from 2,2’-Disubstituted-4,4’-oxidianiline …………………………………………………………61 3.1.1 Monomer synthesis................................................................................................61 3.1.1.1 Synthesis of p-(trifluoromethyl)phenylboronic acid..................................61 3.1.1.2 Synthesis of 2,2’-bis[p-(trifluoromethyl)phenyl]-4,4’-oxydianiline..........64 3.1.1.3 Polyimides synthesis..................................................................................69 3.1.2 Properties of polyimides.........................................................................................73 3.1.2.1 Molecular weights and solubility of polyimides........................................73 3.1.2.2 Morphological structure.............................................................................77 3.1.2.3 Thermal properties.....................................................................................79 3.1.2.4 Mechanical and optical properties..............................................................85 3.2 Synthesis and Characterization of Aromatic Polyamides Derived from 2,2’-Disubstituted-4,4’-oxydianiline........................................................................................89 3.2.1 Polyamides synthesis..............................................................................................89 3.2.2 Properties of polyamides........................................................................................93 3.2.2.1 Molecular weights and solubility of polyamides..........................................93 3.2.2.2 Thermal properties........................................................................................97 3.2.2.3 Morphological structures.............................................................................101 3.2.2.4 Optical properties........................................................................................103 CHAPTER 4 CONCLUSIONS...........................................................................................108 REFERENCES.....................................................................................................................109 LIST OF TABLES Table 1.1.1 Some typical aromatic high-performance polymers...............................................2 Table 1.2.1 Commercially available aromatic polyimides........................................................4 Table 1.3.1 Commercially available aromatic polyamides......................................................14 Table 3.1.3.1.1 Inherent viscosities and molecular weights of polyimides 6a-f......................74 Table 3.1.3.1.2 Solubility of polyimides 6a-f..........................................................................76 Table 3.1.3.3.1 Thermal properties of polyimides 6a-f............................................................84 Table 3.1.3.4.1 Mechanical and optical properties of polyimides 6a-f....................................88 Table 3.2.1.1 Inherent viscosities and molecular weights of polyamides 7a-f........................94 Table 3.2.2.1.1 Solubility of polyamides 7a-f..........................................................................96 Table 3.2.2.2.1 Thermal and optical properties of polyamides 7a-f......................................105 LIST OF FIGURES Figure 3.1.1.1.1 1H NMR spectrum of p-(trifluoromethyl)phenylboronic acid 1 in DMSO-d6.....................................................................................................63 Figure 3.1.1.2.1 (a) 1H and (b) 13C NMR spectra of BTFP-ODA 5 in DMSO-d6...................67 Figure 3.1.1.2.2 HMQC spectrum of BTFP-ODA 5 in DMSO-d6...........................................68 Figure 3.1.2.1 FTIR spectra of polyimide films 6a-f...............................................................71 Figure 3.1.2.2 1H NMR spectrum of polyimide 6e in DMSO-d6.............................................72 Figure 3.1.3.2.1 Wide-angle X-ray diffraction patterns of polyimides 6a-f............................78 Figure 3.1.3.3.1 TMA curves of polyimide films 6a-f.............................................................81 Figure 3.1.3.3.2 TGA curves of polyimides 6a-f.....................................................................83 Figure 3.1.3.4.1 UV-Vis spectra of polyimide films 6a-f........................................................87 Figure 3.2.1.1 FTIR spectra of polyamide films 7a-f..............................................................91 Figure 3.2.1.2 1H NMR spectrum of polyamides 7d...............................................................92 Figure 3.2.2.2.1 DSC curves of polyamides 7a-f.....................................................................98 Figure 3.2.2.2.2 TGA curves of polyamides 7a-f..................................................................100 Figure 3.2.2.3.1 Wide-angle X-ray diffraction patterns of polyamides 7a-f..........................102 Figure 3.2.2.4.1 UV-Vis spectra of polyamide films 7a-f.....................................................104 LIST OF SCHEMES Scheme 3.1.1.1.1 Synthesis of p-(trifluoromethyl)phenylboronic acid 1................................62 Scheme 3.1.1.2.1 Synthetic route of BTFP-ODA 5.................................................................66 Scheme 3.1.2.1 Synthesis of polyimides 6a-f by one-step method..........................................70 Scheme 3.2.1.1 Synthesis of polyamides 7a-f by direct polycondensation.............................90

    1. Friedman, M. L.; Walsh, G. Polym. Eng. Sci. 2002, 42, 1756.
    2. Cassidy, P. E. Thermally Stable Polymers. Dekker: New York, 1980.
    3. Yang, H. H. Aromatic High-Strength Fibers. Wiley: New York, 1989.
    4. Yang, C. P.; Yu, C. W. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 788.
    5. Ghosh, M. K.; Mittal, K. L. Eds. Polyimides: fundamental and applications. Marcel Dekker: New York, 1996.
    6. Morgan, P. W. Chemtech. 1979, 9, 316.
    7. Hergenrother, P. M. Die Angew. Markromol. Chem. 1986, 145, 323.
    8. Yang, H. H. Kevlar Aramid Fiber. Wiley: New York, 1993.
    9. Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M. Eds. Polyimides. Blackie: New York, 1990.
    10. Abadie, M. J. M.; Mittal, B. Eds. Polyimides and Other High-Temperature Polymers. Elsevier: Amsterdam, 1991.
    11. International Union of Pure and Applied Chemistry, Macromolecular Chemistry
    Division (IV), Commision on Macromolecular Nomenclature, Macromolecules, 1997, 30,7356.
    12. Bogert, M. T.; Renshaw, R. R. J. Am. Chem. Soc. 1908, 30, 1135.
    13. Sroog, C. E.; Endrey, A. L.; Abramo, S. V.; Edwards, C. E.; Olivier, K. L. J. Polym. Sci.1965, 3, 1373.
    14. Sroog, C. E. Prog. Polym. Sci. 1991, 16, 561.
    15. Mittal, K. L. Ed. Polyimides: Synthesis, Characterization and Applications. Plenum, NewYork, 1984.
    16. Feger, C.; Khojasteh, M. M.; McGrath, J. E. Eds. Polyimides: Materials, Chemistry and Characterization. Elsevier: Amsterdam, 1989.108
    17. Endrey, A. L. U. S. Patent. 3,179, 630, 1965.
    18. Hsu, L. C. Ph. D thesis. University of Akron, May 1991.
    19. Krenz, J. A.; Endrey, A. L.; Gray. F. P.; Sroog, C. E. J. Polym. Sci. A-1. 1966, 4, 2607.
    20. Johnston, J. C.; Meador, M. A. B.; Alston, W. B. J. Polym. Sci., Part A: Polym. Chem.1987, 25, 2175.
    21. Baise, A. I. J. Appl. Polym. Sci. 1986, 32, 4043.
    22. Endrey, A. L. U. S. Patent. 3,179,630, 1965; 3,179,631, 1965; 3,179,633, 1965,3,179,635, 1965.
    23. Mochizuki, A.; Teranishi, T.; Ueda, M. Polymer J. 26, 315, 1994.
    24. Wallace, J. S.; Arnold, F. E.; Tan, L. S. Am. Chem. Soc. Polym. Prepr. 1987, 28, 316.
    25. Hoogewerff, S.; Van Dorp, W. A. Rec. Trav. Chem. 1986, 13, 93.
    26. Angelo, R. J.; Golike, R. C.; Tatum, W. E.; Kreuz, J. A. Advances in Polyimide Science and Technology. Weber, W. D.; Gupta, M. G. Eds. Plast. Eng. Brookfield, CT, p-67, 1985.
    27. William, E. T. U. S. Patent, 3,261,811, Du Pont Co., 1966.
    28. Maier, G. Prog. Polym. Sci. 2001, 59, 3.
    29. Vinogradova, S. V.; Vygodskii, Y. S.; Korshak, V. V. Polym. Sci. U.S.S.R. 1970, 12, 2254.
    30. Vinogravadova, S. V.; Vygodskii, V. V. D.; Churochkina, N. A.; Chudina, L. I.; Sprina, T. N.; Korshak, V. V. Polym. Sci. U.S.S.R. 1974, 16, 584.
    31. Vinogradova, S. V.; Vygodskii, Y. S.; Korshak, V. V. Vysokomolekulyarnye. Soedineniy., Seriya A. 1970, 12, 1987.
    32. Harris, F. W. Polyimides. Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M. Eds. Chapman and Hall, New York, Chapter 1, 1990.
    33. Endrey, A. L. U. S Patent. 3,179,630, 1965, to Dupont Co.
    34. Alvino. W. M.; Edelman, L. E. J. Appl. Polym. Sci. 1975, 19, 2961.
    10935. Ghatge, N. D.; Mulik, U. P. J. Polym. Sci., Polym. Chem. Ed. 1980, 18, 1905.
    36. Khune, G. D. J. Macromol. Sci. Chem. 1980, A14, 687.
    37. Kilic, S.; Mohanty, D. K.; Yilgor, I.; McGrath, J. E. Am. Chem. Soc. Polym. Prepr. 1986, 27, 218.
    38. Farrissey, W. J.; Alberino, L. M.; Sayigh, A. A. R. J. Elast. Plast. 1975, 7, 28.39. Oishi, Y.; Itoya, K.; Kakimoto, M.; Imai, Y. Polym. J. 1989, 21, 771.
    40. Maruyama, Y.; Oishi, Y.; Kakimoto, M.; Imai, Y. Macromolecules. 1988, 21, 2305.
    41. Imai, Y.; Kojima, K. J. Polym. Sci., Part A-1: Polym. Chem. 1972, 10, 2091.
    42. DuPont. Neth. Patent Application. 6,413,552, 1965.
    43. Imai, Y. J. Polym. Sci., Part A-2: Polym. Phys. 1970, 8, 555.
    44. Takekosi, T. (to General Electric), U. S. Patent. 3,847,870, 1974.
    45. Lin, K. Y. Master thesis. National Taiwan University, August 2010.
    46. Morgan, P. W. Condensation Polymers by Interfacial and Solution Methods. Wiley: New York, 1965.
    47. Onder, k.; Chen, A. T. Polym. Eng. Sci. 1985, 25, 942.
    48. Otuki, T.; Kakimoto, M.; Imai, Y. J. Polym. Sci., Polym. Chem. Ed. 1989, 27, 1775. 49. Oishi, Y.; Kakimoto, M.; Imai, Y. Macromolecules. 1987, 20, 703.
    50. Oishi, Y.; Kakimoto, M.; Imai, Y. Macromolecules. 1988, 21, 547.
    51. Schoenberg, A.; Heck, R.I. J. Org. Chem. 1974, 39, 3327.
    52. Yoneyama, M.; Kakimoto, M.; Imai, Y. Macromolecules. 1988, 21, 1908.
    53. Ogata, N.; Tanaka, H. Polym. J. 1971, 2, 672.
    54. Ogata, N.; Suzuki, G. Macromolecular Syntheses. Wiley: New York, 1974.
    55. Yamazaki, N.; Higashi, F.; Kawabata, J. J. Polym. Sci., Polym. Chem. Ed. 1974, 12, 2149.
    56. Yamazaki, N.; Matsumoto, M.; Higashi, F. J. Polym. Sci., Polym. Chem. Ed. 1975, 13,1373.110
    57. Preston, J.; Hofferbert, W. L. J. Polym. Sci., Polym. Symp. 1978, 65, 13.
    58. Higashi, F.; Ogata, S.; Aoki, Y. J. Polym. Sci., Polym. Chem. Ed. 1982, 20, 2081.
    59. Preston, J.; Krigbaum, W. R.; Kotek, R. J. Polym. Sci., Polym. Chem. Ed. 1982, 20, 3241.
    60. Kotek, R.; Krigbaum, W. R.; Preston, J. J. Polym. Sci., Polym. Chem. Ed. 1983, 21, 2387.
    61. Krigbaum, W. R.; Kotek, R.; Preston, J. J. Polym. Sci., Polym. Chem. Ed. 1984, 22, 873.
    62. Krigbaum, W. R.; Kotek, R.; Mihara, Y.; Preston, J. J. Polym. Sci., Polym. Chem. Ed. 1984, 22, 4045.
    63. Krigbaum, W. R.; Kotek, R.; Mihara, Y.; Preston, J. J. Polym. Sci., Polym. Chem. Ed. 1985, 23, 1907.
    64. Martin, A.R.; Yang, J. Acta Chemica scandinavica. 1993, 47, 221.
    65. Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513.
    66. Thompson, W. J.; Jones, J. H.; Lyle, P. A.; Thies, J. J. Org. Chem. 1988, 53, 2052. 67. Casalnuovo, A. L.; Calabress, J. C. J. Am. Chem. Soc. 1990, 112, 4324.
    68. Stille, J. K. Angew. Chem. 1986, 25, 508.
    69. Manami, H.; Nakazawa, M.; Oishi, Y.; Kakimoto, M.; Imai, Y. J. Polym. Sci., Part A: Polym. Chem. 1990, 28, 465.
    70. Hsiao, S. H.; Yang, C. P.; Fan, J. C. Macromol. Chem. Phys. 1995, 196, 3041.
    71. Critchley, J. P.; White, M. A. J. Polym. Sci., Polym. Chem. Part A-1. 1972, 10, 1809.
    72. Ghatge, N. D.; Shinde, B. M.; Mulik, U. P. J. Polym. Sci., Polym. Chem. Ed. 1984, 22, 3359.
    73. Tamai, S.; Yamaguchi, A.; Ohta, M. Polymer. 1996, 37, 3683.
    74. Akutsu, F.; Inoki, M.; Sawano, M.; Kasashima, Y.; Naruchi, K.; Miura, M. Polymer. 1998, 39, 6093.
    75. Hsiao, S. H.; Chu, K. Y. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 3385.
    76. Zheng, H. B.; Wang, Z. Y. Macromolecules. 2000, 33, 4310.
    111
    77. Gao, C. L.; Wu, X. E.; Lv, G. H.; Ding, M. X.; Gao, L. X. Macromolecules. 2004, 37, 2754.
    78. Hsiao, S. H.; Lin, K. H. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 331.
    79. Imai, Y.; Maldar, N. N.; Kakimoto, M. J. Polym. Sci., Polym. Chem. Ed. 1985, 23, 1797.
    80. Espeso, J. F.; Ferrero, E.; De la Campa, J. G.; Lozano, A. E.; De Abajo, J. J. Polym. Sci.,Part A: Polym. Chem. 2001, 39, 475.
    81. Liaw, D. J.; Liaw, B. Y.; Yang, C. M. Macromol. Chem. Phys. 2001, 201, 1866.
    82. Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M.; Imai, Y. J. Polym. Sci., Part A:Polym. Chem. 2002, 40, 2810.
    83. Hsiao, S. H.; Chung, C. L.; Lee, M. L. J. Polym. Sci., Part A: Polym. Chem. 2004, 42,1008.
    84. Liou, G. S.; Maruyama, M.; Kakimoto, M.; Imai, Y. J. Polym. Sci., Part A: Polym. Chem.1993, 31, 2499.
    85. Imai, Y. React. Funct. Polym. 1996, 30, 3.
    86. Hsiao, S. H.; Yang, C. P.; Yang, C. Y. J. Polym. Sci., Part A: Polym. Chem. 1997, 35,1487.
    87. Chou, C. H.; Reddy, D. S.; Hsu, C. F. J. Polym. Sci., Part A: Polym. Chem. 2002, 40,3615.
    88. Reddy, D. S.; Chou, C. H.; Hsu, C. F.; Lee, G. H. Polymer. 2003, 44, 557.
    89. Garcia, J. M.; Garcia, F. C.; Serna, F. J. Polym. Sci., Part A: Polym. Chem. 2003, 4, 1202.
    90. Serna, F.; Garcia, F.; De la Pena, J. L.; Calderon, V.; Garcia, J. M. J. Polym. Res. 2007,14, 341.
    91. Yang, C. P.; Lin, J. H. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2153.
    92. Liaw, D. J.; Liaw, B. Y.; Lai, S. H. Macromol. Chem. Phys. 2001, 202, 807.
    112
    93. Kung, Y. C.; Liou, G. S.; Hsiao, S. H. J. Polym. Sci., Part A: Polym. Chem. 2009, 47,1740.
    94. Hsiao, S. H.; Liou, G. S.; Kung, Y. C.; Pan, H. Y.; Kuo, C. H. Eur. Polym. J. 2009, 45,2234.
    95. Liou, G. S.; Yang, Y. L.; Su, Y. O. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2587.
    96. Hsiao, S. H.; Chang, Y. M.; Chen, H. W.; Liou, G. S. J. Polym. Sci., Part A: Polym.Chem. 2006, 44, 4579.
    97. Hsiao, S. H.; Chen, C. W.; Liou, G. S. J. Polym. Sci., Part A: Polym. Chem. 2004, 42,3302.
    98. Liou, G. S.; Hsiao, S. H. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2564.
    99. Liou, G. S.; Hsiao, S. H. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 459.
    100. Lin, C. H.; Chang, S. L.; Cheng, P. W. J. Polym. Sci., Part A: Polym. Chem. 2011, 49,1331.
    101. Chen. J. C. Ph. D thesis. University of Akron, August, 1996.
    102. Liaw, D. J.; Chang, F. C.; Leung, M. K.; Chou, M. Y.; Muellen, K. Macromolecules.2005, 38, 4024.
    103. Liou, G. S.; Fang, Y. K.; Yen, H. J. J. Polym. Res. 2007, 14, 147.
    104. Li, Y.; Xu, H.; Tao, X.; Qian, K.; Fu, S.; Shen, Y.; Ding, S. J. Mater. Chem. 2011, 21,1810.
    105. Morikawa, A.; Furukawa, T. A.; Moriyama, Y. Polym. J. 2005, 37, 759.
    106. Han, K.; You, K.; Jang, W. H.; Rhee, T. H. Macromol. Chem. Phys. 2000, 201, 747.
    107. Chung, I. S.; Kim, S. Y. Macromolecules. 2000, 33, 3190.
    108. Yang, C. P.; Su, Y. Y. Polymer. 2003, 44, 6311.
    109. Liaw, D. J.; Liaw, B. Y.; Cheng, Y. C. Macromol. Chem. Phys. 2001, 202, 1625.113
    110. Yang, C. P.; Chen, Y. P.; Woo, E. M. J. Polym. Sci., Part A: Polym. Chem. 2004, 42,3116.
    111. Hsiao, S. H.; Yang, C. P.; Huang, S. C. J. Polym. Sci., Part A: Polym Chem. 2004, 42,2377.
    112. Yang, C.P.; Hsiao, S. H.; Wu, K. L. Polymer. 2003, 44, 7067.
    113. Chung, C. L.; Hsiao, S. H. Polymer. 2008, 49, 2476.
    114. Lin, S. H.; Li, F.; Cheng, S. Z. D.; Harris, F. W. Macromolecules. 1998, 31, 2080.
    115. Liu, Y.; Zhang, Y.; Guan, S.; Li, L.; Jiang, Z. Polymer. 2008, 49, 5439.
    116. Clair, T. L. S. Polyimides. Wilson, D.; Stanzenberger, S. D.; Hergenrother, P. M. Eds.Chapman and Hill, Now York, 1990.
    117. Lin, S. C.; Pearce, E. M. Eds. High performance Thermosets. Hanser/Gardner, New York, 1994.
    118. Teclechiel, D.; Christiansson, A.; Bergman, K.; Marsh, G. Environ. Sci. Technol. 2007, 41, 7459.
    119. Chen, J. C.; Liu, Y. T.; Leu, C. M.; Liao, H. Y.; Lee, W. C.; Lee, T. M. J. Appl. Polym. Sci. 2010, 117, 1144.
    120. Behniafar, H.; Khosravi-borna, S. Polym. Int. 2009, 58, 1299.
    121. Phillips, D. P.; Zhu, X. F.; Lau, T. L.; He, X.; Yang, K.; Liu, H. Tetrahedron. Lett. 2009, 50, 7293.
    122. Li, Y.; Wang, X.; Ding, M.; Xu, J. J. Appl. Polym. Sci. 1996, 61, 741.
    123. Xiao, S.; Huang, R. Y. M.; Feng, X. Polymer. 2007, 48, 5355.
    124. Yang, C. P.; Chen, R. S.; Chen, K. H. Colloid. Polym. Sci. 2003, 281, 505.
    125. Dinc-Hart, R. A.; Wright, W. W. Makromol. Chem. 1971, 143, 189.
    126. Ishida, H.; Wellinghoff, S. T.; Baer, E.; Koenig, J. L. Macromolecules. 1980, 13, 826.
    127. Hsiao, S. H.; Yang, C. P.; Chen, Y. C.; Wang, H. M.; Guo, W. J. Appl. Polym. Sci. 2009,114113, 3993.
    128. Ueda, M.; Aizawa, T.; Imai, Y. J. Polym. Sci., Polym. Chem. Ed. 1977, 15, 2739.
    129. Yang, C. P.; Hsiao, S. H.; Lin, Y. S. J. Appl. Polym. Sci. 1995, 51, 2063.
    130. Hsiao, S. H.; Yang, C. P. J. Polym. Sci.,Part A: Polym. Chem. 1990, 28, 2501.
    131. Butta, E.; De petris, S.; Frosini, V.; Pasquini, M. Eur. Polym. J. 1971, 7, 387.
    132. In, I.; Kim, S. Y. Polymer. 2006, 47, 547.

    QR CODE