簡易檢索 / 詳目顯示

研究生: 曾敬哲
Tseng - Ching Che
論文名稱: 合成新型含三苯胺及金剛烷之聚醯亞胺與聚醯胺及其性質研究
Synthesis and Characterization of New Polyimides and Polyamides with Triphenylamine and Adamantane Groups
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 江選雅
none
陳志堅
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 90
中文關鍵詞: 三苯胺金剛烷聚醯亞胺聚醯胺
外文關鍵詞: triphenylamine, adamantane, polyimide, polyamide
相關次數: 點閱:220下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以含有三苯胺及金剛烷的二胺單體與芳香族酸酐所合成的聚醯亞胺其固有黏度範圍在0.38 ~ 1.34 dL/g,其聚醯胺酸黏度範圍在0.94 ~ 2.03 dL/g,且具有不錯的溶解度,這些聚醯亞胺可溶於NMP 、o-chlorophenol和chloroform。經DMA測定之後,其玻璃轉移溫度在362 ~ 453℃之間。經TGA測定後,其10%熱重損失於空氣下介於513 ~ 542℃,氮氣下介於521 ~ 536℃,在氮氣下600℃燃燒殘餘率在65 ~ 75%之間。經紫外光譜儀(UV/Vis)測試所合成之聚醯亞胺之光學性質,其主要的UV吸收峰在320 nm左右,而由光激發所產生的螢光主要發生在530 nm左右,這是屬於綠光範圍。經電化學分析後,再配合紫外光譜,求得聚醯亞胺其能階差(LUMO -HOMO)的範圍在3.08 ~ 3.58 eV之間。
    以含有三苯胺及金剛烷的二胺單體與芳香族二酸所合成的聚醯胺其固有黏度範圍在0.54 ~ 0.69 dL/g,且具有不錯的溶解度,這些聚醯亞胺可溶於NMP 、o-chlorophenol、DMAc、cyclohexanone。經DMA測定之後,其玻璃轉移溫度在331 ~ 356℃之間。經TGA測定後,其10%熱重損失於空氣下介於479 ~ 511℃,氮氣下介於494 ~ 507℃,在氮氣下600℃燃燒殘餘率在60 ~ 67%之間。經紫外光譜儀(UV/Vis)測試所合成之聚醯亞胺之光學性質,其主要的UV吸收峰在333 nm左右,而由光激發所產生的螢光主要發生在530 nm左右,這是屬於綠光範圍。經電化學分析後,再配合紫外光譜,求得聚醯胺其能階差(LUMO -HOMO)的範圍在3.10 ~ 3.16 eV之間。


    The polyimides derived from N,N-bis(4-aminophenyl)-4-adamantylaniline, had inherent viscosities of 0.38 ~ 1.34 dL/g and the poly(amic acid) had inherent viscosities of 0.94 ~ 2.03dL/g. The polyimides were readily soluble in NMP, o-chlorophenol and chloroform. The dynamic mechanical analysis(DMA) reveals that the glass transition temperatures(Tg) ranged on 362 ~ 453℃. In addition, the temperature of 10% weight loss in air and nitrogen ranged on 513 ~ 542℃ and 521 ~ 536℃ by the thermal gravity analyzer(TGA). These polymers exhibited strong UV-vis absorption bands about 320 nm in NMP 10-4M solution. The photoluminescence spectra showed maximum bands around 530 nm in the green region. The energy gap of polyimides ranged on 3.08 ~ 3.58 eV.
    The polyamides derived from N,N-bis(4-aminophenyl)-4-adamantylaniline, had inherent viscosities of 0.54 ~ 0.69 dL/g. The polyamides were readily soluble in NMP, o-chlorophenol, DMAc and cyclohexanone. The dynamic mechanical analysis(DMA) reveals that the glass transition temperatures(Tg) ranged on 331 ~ 356℃. In addition, the temperature of 10% weight loss in air and nitrogen ranged on479 ~ 511℃ and 494 ~ 507℃ by the thermal gravity analyzer(TGA). These polymers exhibited strong UV-vis absorption bands about 333 nm in NMP 10-4M solution. The photoluminescence spectra showed maximum bands around 530 nm in the green region. The energy gap of polyamides ranged on 3.10 ~ 3.16 eV.

    目錄 Abstract ………………………………………………………………Ⅰ 摘要 ………………………………………………………………Ⅱ 目錄 ………………………………………………………………Ⅳ Scheme 索引……………………………………………………………Ⅶ Table 索引………………………………………………………………Ⅷ Figure 索引 ……………………………………………………………Ⅸ 第一章 緒論 ……………………………………………………………1 1-1 前言 ……………………………………………………………1 1-2 聚醯亞胺簡介……………………………………………………1 1-3 聚醯亞胺的合成方法……………………………………………3 1-4 聚醯亞胺的改質及其應用………………………………………9 1-5 聚醯胺簡介………………………………………………………13 1-6 聚醯胺合成………………………………………………………14 1-7 聚醯胺的改質與應用……………………………………………20 1-8 三苯胺的應用與文獻回顧………………………………………23 1-9 金剛烷的應用與文獻回顧………………………………………29 1-10 擬進行之研究……………………………………………………29 第二章 實驗………………………………………………………………31 2-1 實驗藥品…………………………………………………………31 2-2 實驗程序…………………………………………………………34 2-2-1 單體製備………………………………………………………34 2-2-2 聚醯亞胺的合成………………………………………………37 2-2-3 聚醯胺的合成…………………………………………………39 第三章 結果與討論 ……………………………………………………44 3-1 聚醯亞胺的合成…………………………………………………44 3-2 聚醯亞胺的物性分析……………………………………………47 3-2-1 溶解度測試……………………………………………………47 3-2-2 熱性質測試……………………………………………………48 3-2-3 電化學性質及光學性質測試…………………………………49 3-2-4 螢光性質測試…………………………………………………50 3-3 聚醯胺合成………………………………………………………50 3-4 聚醯胺物性分析…………………………………………………53 3-4-1 溶解度測試……………………………………………………53 3-4-2 熱性質測試……………………………………………………54 3-4-3 電化學性質光學性質測試……………………………………55 3-4-4 螢光性質測試…………………………………………………56 第四章 結論………………………………………………………………57 4-1 聚醯亞胺…………………………………………………………57 4-2 聚醯胺……………………………………………………………58 參考文獻……………………………………………………………………5 Scheme 索引 Scheme 1 合成聚醯亞胺之反應…………………………………………37 Scheme 2 合成聚醯胺之反應……………………………………………39 Table 索引 Table 1 The Inherent Viscosities of Soluble Polyimides and Poly(amic acid)s. ………………………………………………47 Table 2 Solubility of Polyimides. ………………………………………48 Table 3 Thermal Properties of Polyimides.………………………………48 Table 4 Optical and Electrochemical Properties for Polyimides. ………49 Table 5 PL Properties of Polyimides. ……………………………………50 Table 6 The Inherent Viscosities of Soluble Polyamides. ………………52 Table 7 Solubility of Polyamides. ………………………………………53 Table 8 Thermal Properties of Polyamides. ……………………………54 Table 9 Optical and Electrochemical Properties for Polyamides. ………55 Table10 PL Properties of Polyimides. …………………………………56 Figure 索引 Figure 2-1 FTIR spectrum of N,N-bis(4-aminophenyl)-4-adamantylaniline(6) ……………64 Figure 3-1 DMA curve of polyimide 8a in nitrogen atmosphere at a heating rate of 5℃/min ………………………………………………64 Figure 3-2 DMA curve of polyimide 8b in nitrogen atmosphere at a heating rate of 5℃/min ………………………………………………65 Figure 3-3 DMA curve of polyimide 8c in nitrogen atmosphere at a heating rate of 5℃/min ………………………………………………65 Figure 3-4 DMA curve of polyimide 8c in nitrogen atmosphere at a heating rate of 5℃/min ………………………………………………66 Figure 3-5 DMA curve of polyimide 8e in nitrogen atmosphere at a heating rate of 5℃/min ………………………………………………66 Figure 3-6 TGA curve of polyimide 8b in nitrogen atmosphere at a heating rate of 10℃/min………………………………………………67 Figure 3-7 TGA curve of polyimide 8c in nitrogen atmosphere at a heating rate of 10℃/min………………………………………………67 Figure 3-8 UV/Visible curve of polyimides 8a ~ 8e in NMP solvent 10-4 M. ………………………………………………68 Figure 3-9 CV curve of Ferrocene in 0.1M TBAP/CH3CN at a scanning rate of 100mV/s …………………………………………………68 Figure 3-10 CV curve of the casting film of polyimide 8b on an ITO-coated glass substrate. ………………………………………………69 Figure 3-11 CV curve of the casting film of polyimide 8d on an ITO-coated glass substrate. ………………………………………………69 Figure 3-12 CV curve of the casting film of polyimide 8e on an ITO-coated glass substrate. ………………………………………………70 Figure 3-13 PL curve of polyimides 8a ~ 8e in NMP solvent 10-6 M. ……70 Figure 3-14 DMA curve of polyamide 9a in nitrogen atmosphere at a heating rate of 5℃/min………………………………………………71 Figure 3-15 DMA curve of polyamide 9b in nitrogen atmosphere at a heating rate of 5℃/min………………………………………………71 Figure 3-16 DMA curve of polyamide 9c in nitrogen atmosphere at a heating rate of 5℃/min………………………………………………72 Figure 3-17 DMA curve of polyamide 9d in nitrogen atmosphere at a heating rate of 5℃/min………………………………………………72 Figure 3-18 TGA curve of polyamide 9a in nitrogen atmosphere at a heating rate of 10℃/min………………………………………………73 Figure 3-19 TGA curve of polyamide 9b in nitrogen atmosphere at a heating rate of 10℃/min………………………………………………73 Figure 3-20 TGA curve of polyamide 9c in nitrogen atmosphere at a heating rate of 10℃/min………………………………………………74 Figure 3-21 UV/Visible curve of polyamides 9a ~ 9d in NMP solvent 10-4 M solvent 10-4 M…………………………………………………74 Figure 3-22 CV curve of the casting film of polyamide 9b on an ITO-coated glass substrate. ………………………………………………75 Figure 3-23 CV curve of the casting film of polyamide 9c on an ITO-coated glass substrate. ………………………………………………75 Figure 3-24 CV curve of the casting film of polyamide 9d on an ITO-coated glass substrate. ………………………………………………76 Figure 3-25 PL curve of polyamides 9a ~ 9d in NMP solvent 10-6 M. ……76

    參考文獻
    1. 馬振基,“高分子複合材料(上)”,國立編譯館(1995)
    2. T.M. Bogert, and R.R. Renshaw, J. Am. Chem. Soc. 30, 1140 (1908)
    3. P.M. Heigenisher and N.J. Johnstin, ACS Symp.Ser132, American Chemical Society Washington, DC 3 (1980)
    4. 陳文祥等,“科學發展”,2002年8月,356期
    5. 林金雀,聚醯亞胺樹脂在電子相關產業之應用,化工資訊月刊 13, 29 (1999)
    6. D. Wilson, H.D. Stenzenberger and P.M. Hergenrother, Polyimides Blackie & Son,London 1 (1990)
    7. N. A. Adrova, M. I. Bessonov, L. A. Laius and A. P. Rudakov, Polyimide:A new class of thermally stable polymers(in Russian), Nauka, Leningrad1, 1968
    8. 李伯毅,正型鹼性水溶液顯影感光性聚亞醯胺材料之研究,國立成功大學化工研究所碩士論文,2002
    9. H. D. Stenzenberger, Brit. Polym. J. 15 (1979)
    10. M. Grundschober, British Pat.1190718 (1978)
    11. N. Bilow, A.L. Landis and L.J. Miller, U. S. Patent 3,845,018 (1974)
    12. F.W. Harris and S.L-C. Hsu, High Perform. Polym. 1, 1, (1999)
    13. Y. Oishi, M. Ishida, M.A. Kakimoto and Y. Imai, J. Polym. Sci. Part A: Polym. Chem. 30, 1027 (1992)
    14. A. C. Misra, G. Tesoro, G. Hougham and S. M. Pendharkar, Polymer 33, 1078 (1993)
    15. W.G. Kim and A.S . Hay, Macromolecules 26, 5275 (1993)
    16. H.J. Jeong, M.A. Kakinoto and Y.I. Mai, J. Polym. Sci. Part A: Polym. Chem. 29, 1691 (1991)
    17. C.P. Yang and W.T. Chen, Macromolecules 26, 4865 (1993)
    18. P.A. Falcigno, S. Jasne and M. King, J. Polym. Sci. Part A: Polym. Chem. 29, 1691 (1991)
    19. H.G. Rogers, R.A. Gaudiana, W.C. Hollinsed, P.S. Kalyanaraman, J.S. Manello, C. McGoWan, R.A. Minns and R. Sahatjian, Macromolecules 18, 1085 (1985)
    20. 網址:http://cslin.auto.fcu.edu.tw/oe/oe/lcd/subject1-2.htm
    21. Y. Wu, Q. Zhang, A. Kanazawa, T. Shiono, T. Ikeda and Y. Nagase, Macromolecules 32, 3952 (1999)
    22. C.Harbordt, Ann.Chem.Pharm.,123, 287, 1862
    23. S.Gabriel and T.A.Maas, Ber.Dtsch.Chem.Ges.,32, 1266, 1899.
    24. W.H.Carothers, U.S.Pat.2, 130,523, 1938 to E.I.du Pont de Nemours & Co.;C.A.,32,9498, 1938.
    25. W.Michler and A.Zimmermann, Ber.Dtsch.Chem.Gesel., 14, 2177, 1881.
    26. M.Frankel, Y.Liwschitzy and A.Zilkha, Experientia, 9, 179, 1953.
    27. N.V.Mikhailov, V.I.Maiboroda and S.S.Nikolaeva, Vysokomol.Soedin., 2, 989, 1960.
    28. T.M.Frunze, V.V.Korshak, V.V.Kurashev and P.A.Alievskii, Vysokomol.Soedin., 1, 1795, 1959.
    29. P.W.Morgan and S.L.Kwolek, J.Polym.Sci., 62, 33, 1962.
    30. E.L.Wittbecker and P.W.Morgan, J.Polymer Sci., 40, 289, 1959.
    31. P.W.Morgan and S.L.Kwolek, J.Polymer Sci., 40, 299, 1959.
    32. R.G.Beaman, P.W.Morgan,C.R.Kroller, E.L.Wittbeaker and E.E.Magat, J.Polymer Sci., 40,329, 1959.
    33. J.R.Schaetgen, F.H.Koonntz and R.F.Tietz, J.Polmer Sci.,40, 377, 1959.
    34. D.J.Lyman and S.L.Jung, J.Polymer Sci., 40, 407, 1959.
    35. H.Sekiguchi and B.Coutin, Polyamides, Handbook of Polymer Synthesis Part A., Marcel Dekker, New York, 849, 1992.
    36. C.P.Yang and W.T.Chen, Makromol.Chem.,194, 1959, 1993.
    37. N.Yamazaki, F.Higashi and F.Higashi, J.Polym Sci.Polym Chem.Ed.,12, 2149, 1947.
    38. N.Yamazaki, M.Matsumoto and F.Higashi, J.Polym. Sci, Polym.Chem.Ed., 13, 1373, 1975.
    39. C.P.Yang and Y.Y.Yen, J.Polym, Sci, Polym.Chem., 30, 1885, 1992.
    40. P.J.Perry, B.D.Wilson, Macromolecules, 26, 1503, 1993.
    41. Y.Takahashi, M.Iijima, Y.Oishi, M.A.Kakimoto and Y.Imai, Macromolecules, 24, 3543, 1991.
    42. Y.Oshi, M.A.Kakimoto and Y.Imai, Macromolecules, 21, 547, 1988.
    43. H.J.Jeong, M.A.Kakimoto and Y.Imai, J,Polym.Sci., Polym.Chem, 29, 767,1991.
    44. A.L.CimeciogLu and R.A.Weiss, J. Polym.Sci, Polym.Chem., 30, 1051, 1992.
    45. C.P.Yang and J.H.Lin, J.Poym.Sci.Polym.Chem., 32, 423, 1994.
    46. C.P.Yang and W.T.Chen, Makromol.Chem.,194, 1595, 1993.
    47. V.V.Korshak, A.L.Rusanov, D.S.Tugishi and G.M.Cherkasova, Macromolecules, 5, 807, 1972.
    48. F.Akutsu, T.Kataoka, K.Naruchi, M.Miura and K.Nagakubo, Polymer, 28, 1787, 1987.
    49. Y.Imai, N.N.Malder and M. Kakimoto, J.Polym.Sci., Polym.Chem.Ed.,23,797,1985.
    50. J.Y.Jadhav, J.Preston and W.R.Wrigbaum, J.Polym.Sci, Polym.Chem.Ed., 23, 1175, 1989.
    51. Y.Delaviz, A.Gungor, J.E.McGrath and H.W.Gibson, Polymer, 34, 210, 1993.
    52. M.Takayznagi and T.Katayose, J.Polym.Sci., Polym.Chem.Ed., 19,1133,1981.
    53. W.F.Hale, A.G.Farnham, R.N.Johnson and R.A.Clendining, J.Polym.Sci Polym.Chem.Ed.,5, 2399, 1967.

    54. B.F.Malichenko, V.V.Sherikova, L.C.Chervgatsova, A.A.Kachan and G.I.Motryuk, Vysokomol.Soedin.Ser.B, 14, 423.
    55. S.V.Vinogradova and Ya.S.Vygodskii, Russ.Chem.Rev., 42, 551, 1974.
    56. S.V.Vinogradova and V.V.Korshak, J.Macromol.Sci.Cehm., 11, 45, 1974.
    57. H.J.Jeong, Y.Oishi, M.A.Kakimoto and Y.Imai, J.Polym.Sci.Polym.Chem.,28 ,3293, 1990.
    58. M.Pope, H.P.kallmann, P.Magnante, J.Chem.Phys., 1962,37,384.
    59. C.W.Tang, S.A.Vanslyke, Appl.Phys.Lett, 1987, 51, 913.
    60. C.W.Tang, S.A.Vanslyke and C.H.Chen, J.Appl.Phys,1989, 65, 3610.
    61. J.H.Burroughes, D.D.C.Bradley, A.R.Brown, R.N.Marks, K.Mackay, R.h.Friend, P.L.Burns, A.B.Holmes, Nature, 1990, 347, 539.
    62. Y.J.Pu, T.Kurata, M.Soma, J.Kido, H.Nishide, Syn.Met, 143, 2004.
    63. F.Liang, Y.J.Pu, T.Kurata, J.Kido, H.Nishide, Poly, 46, 2005.
    64. C.Adachi, S.Tokito, T.Tsutsui and S.Saito, Japan J.Appl.Phys., 1988, 27, L713.
    65. P.M.Borsenberger, W.Mey and A.Chowdry, J.Appl.Phys., 1987, 49, 273.
    66. Y. T. Chern and H. C Shiue, Macromolecules, 1997, 30, 4646
    67. Khardin, A. P.; Radchenko, S. S. Russ. Chem. Rev. 1982, 51,
    272

    無法下載圖示 全文公開日期 2012/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE