簡易檢索 / 詳目顯示

研究生: 章強
Qiang Zhang
論文名稱: 基於三苯胺之共軛高分子及聚醯亞胺高分子:合成、鑒定及應用
Triphenylamine-based conjugated polymers and polyimides: Synthesis, characterization and applications
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 張家耀
Jia-Yaw Chang
廖德章
Der-Jang Liaw
何郡軒
Jinn-Hsuan Ho
李魁然
Kueir-Rarn Lee
陳信龍
Hsin-Lung Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 108
中文關鍵詞: 電致變色共軛高分子聚醯亞胺電極緩衝材料
外文關鍵詞: Electrochromic, Conjugated polymer, Polyimide, electrode buffer layer materials
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 首先,我們合成了一個名為ECPblack的新型共軛高分子。 ECPblack在大部分可見光區域顯示出超高對比度(超過80%)的電致變色特性,在380至880奈米波長下顯示出71.8%的積分對比度。 ECPblack的長共軛側鏈(芘)提升了第二重氧化態中藍色區域的吸收並導致了它具有穿透(中性狀態)至黑色(氧化狀態)的變化。另一方面,一種開發無色至有色變化的電致變色聚醯亞胺高分子被開發,實施例為PI-1a及PI-2a高分子,顯示出超高對比度。他們的結構中加入環酯烷,非線性,扭曲型以及適當的共軛結構。這些特殊的結構導致了聚醯亞胺鬆散的主鏈結構及共軛斷裂,最小化電荷轉移錯體的形成。值得注意的是,經由控制電變色基團的共軛長度,透明至無色轉換的電致變色高分子(PI-1a)顯示出可見光區域超高的積分對比度(91.4%)並在798奈米處具有96.8%的對比度。另外,由於PI-1a具有不對稱結構,其膜具有非常鬆散的結構,導致了對離子的快速滲透(ClO_4^-),顯示出快速的電化學及電致變色行為(switching and bleaching time of 1.3 s and 1.1 s)。此外,基於PI-1a的電致變色元件揭露了超過80%的積分對比對。
    第二,一種新型的電極緩衝材料,具有電洞傳遞或者降低電極功函數的性質,利用PDTON進行實例展示,可被稱為一種“通用型”的電極材料。基於醋酸及乙酸乙酯的分散液組成,PDTON形成兩種奈米球,基於其構造和性質,分別定義為A-PDTON及C-PDTON,分別適合於做電洞傳輸及降低電極功函數作用。將A-PDTON及C-PDTON分別應用於有機太陽能電池,有機發光二極體及鈣鈦礦太陽能電池,作為各個元件的電子、電洞層材料,可得到相當甚至更佳的元件效率。


    First, a novel conjugated polymer, denoted as ECPblack is synthesized. ECPblack demonstrated unique electrochromic behavior with an ultrahigh contrast ratio (over 80%) in most of the visible region, boasting an ultrahigh integrated contrast ratio of 71.8% between 380 nm to 880 nm. The long conjugated pendant group (pyrene) in ECPblack enhances the absorption in the blue region in its second oxidized state and results in transmissive-to-black electrochromic switching between the neutral state and the oxidized state. On the other hand, a facile strategy in developing colorless-to-colorful switching electrochromic polyimides with very high contrast ratio were exemplified by PI-1a (colorless-to-black) and PI-2a (colorless-to-blue), which were incorporated with alicyclic nonlinear, twisted structures and adjusted conjugated electrochromophores. Their specific structures resulted in their loose chain stacking and conjugation break, which minimized the charge transfer complex formation. It is noted that, by controlling the conjugation length of electrochromophore, the colorless-to-black switching ECP film (PI-1a) exhibited an ultrahigh integrated contrast ratio (Δ%Tint) up to 91.4% from 380 to 780 nm (96.8% at 798 nm). In addition, PI-1a films with asymmetric structure also demonstrated fast electrochemical and EC behaviors (a switching and bleaching time of 1.3 s and 1.1 s, respectively) due to the loose chain stacking, which provided more pathways for the penetration of counterion (ClO_4^-). Moreover, the colorless-to-black EC device based on PI-1a revealed an overall Δ%Tint up to 80%.
    Second, a novel concept of electrode buffer layer material, exhibiting either hole transporting or reducing electrode work function (WF) properties, is demonstrated by the example of a polymeric compound PDTON, which can be utilized as a ‘universal’ electrode (either for anode or cathode) buffer layer material. Depending on the composition ratio of acetic acid and ethyl acetate upon dispersing, PDTON forms two kinds of nanospheres, serving as building blocks and defining the morphology and properties of the respective materials, termed as A-PDTON and C-PDTON. These materials are suitable for hole transport (triphenylamine on the surface of A-PDTON nanospheres) and reducing the WF of electrode due to the formation of suitable interfacial dipole (C-PDTON), respectively. The application of A-PDTON and C-PDTON on organic solar cells, organic light-emitting diodes and perovskite solar cells, comparable or even exceeding performance could be obtained.

    中文摘要 IV 英文摘要 VI 致谢 VIII 目录 VIII Chapter 1 Transmissive-to-black electrochromic conjugated polymer 1 1.1 Introduction 1 1.2 Results and discussion 3 1.2.1 Experimental Section 3 1.2.2 Synthesis, basic characterizations and device fabrication 5 1.2.3 Materials 5 1.2.4 Synthesis of monomers and polymers 6 1.2.5 Thermal properties 11 1.2.6 Optical properties 12 1.2.7 Electrochemical properties 14 1.2.8 Electrochromic behavior of pristine ECPblack 15 1.3 Reference 17 Chapter 2 Colorless-to-colorful electrochromic polyimides 20 2.1 Introduction 20 2.2 Results and discussion 22 2.2.1 Materials 22 2.2.2 Methods 22 2.2.3 Synthesis and characterization 26 2.2.4 Facile strategy in developing colorless-to-colorful ECPs 41 2.2.5 Superior transmittance of polyimides 42 2.2.6 EC behavior of PI-1a and PI-2a films 43 2.2.7 Fast EC behavior in PI-1a film 47 2.2.8 Colorimetry 53 2.3 Reference 55 Chapter 3 Conjugated polymer for buffer layers of electronic devices 65 3.1 Introduction 65 3.2 Results and discussion 67 3.2.1 Synthetic route of PDTON 67 3.2.2 Materials 68 3.2.3 Synthesis and characterization 59 3.2.4 Thermal properties and molecular weight 74 3.2.5 Polymer characterization and dispersion 74 3.2.6 A- and C-PDTON nanospheres 78 3.3 Reference 95

    1 S. B. Darling, F. You, RSC Adv. 2013, 3, 17633-17648.
    2 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science, 2012, 338, 643-647.
    3 M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501, 395-398.
    4 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 1990, 347, 539-541.
    5 H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, Nat. Photon., 2009, 3, 649-653.
    6 R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund and W. R. Salaneck, Nature, 1999, 397, 121-128.
    7 Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang, K. G. Neoh, Prog. Polym. Sci., 2008, 33, 917-978.
    8 N. Chakravarthi, K. Gunasekar, W. Cho, D. X. Long, Y. –H. Kim, C. E. Song, J. –C. Lee, A. Facchetti, M. Song, Y. –Y. Noh and S. –H. Jin, Energy Environ. Sci., 2016, 9, 2595-2602.
    9 B. H. Lee, J. H. Lee, S. Y. Jeong, S. B. Park, S. H. Lee, K. Lee Adv. Energy Mater., 2015, 5, 1401653.
    10 C. G. Tang, M. C. Y. Ang, K. K. Choo, V. Keerthi, J. K. Tan, M. N. Syafiqah, T. Kugler, J. H. Burroughes, R. Q. Png, L. L. Chua and P. K. H. Ho. Nature, 2016, 539, 536-541.
    11 B. Xu, Z. Zheng, K. Zhao, J. Hou, Adv. Mater., 2016, 28, 434–439.
    12 Y.-C. Tseng, A. U. Mane, J. W. Elam, S. B. Darling, Sol. Energy Mater. Sol. Cells 2012, 99, 235-239.
    13 C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds and F. So, Nat. Photon. 2012, 6, 115-120.
    14 H. Wu, F. Huang, Y. Mo, W. Yang, D. Wang, J. Peng, Y. Cao, Adv. Mater., 2004, 16, 1826-1830.
    15 Z. He, C.i Zhong, S. Su, M. Xu, H. Wu and Y. Cao. Nat. Photon., 2012, 6, 591-595.
    16 Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell and Y. Cao. Nat. Photon., 2015, 9, 174-179.
    17 K. Zhang, C. Zhong, S. Liu, C. Mu, Z. Li, H. Yan, F. Huang, Y. Cao, ACS Appl. Mater. Interfaces, 2014, 6, 10429-10435.
    18 Y. Zhou, C. F. Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, B. Kippelen, Science, 2012, 336, 327-332.
    19 K. H. Ok, J. Kim, S. R. Park, Y. Kim, C. J. Lee, S. J. Hong, M. G. Kwak, N. Kim, C. J. Han and J. W. Kim, Sci. Rep. 2015, 5, 9464.
    20 E. S. R. Bovill, J. Griffin, T. Wang, J. W. Kingsley, H. Yi, A. Iraqi, A. R. Buckley and D. G. Lidzey, Appl. Phys. Lett., 2013, 102, 183303.
    21 J. N. Israelachvili, Intermolecular and surface forces (Academic Press, Boston, 1992).
    22 D. Beattie, K. H. Wong, C. Williams, L. A. P. Warren, T. P. Davis, C. B. Kowollik and M. H. Stenzel, Biomacromolecules, 2006, 7, 1072-1082.
    23 T. S. Kale, A. Klaikherd, B. Popere and S. Thayumanavan, Langmuir, 2009, 25, 9660–9670.
    24 C. Reichardt and T. Welton, Solvents and solvent effects in organic chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, 2010).
    25 B. Liu, W. L. Yu, Y. H. Lai, W. Huang, Macromoleucles, 2002, 35, 4975-4982.
    26 H. S. Van Klooster and W. A. Douglas, J. Phys. Chem., 1945, 49, 67–70.
    27 B. Watts, S. Swaraj, D. Nordlund, J. Lüning, H. Ade, J. Chem. Phys., 2011, 134, 024702.
    28 Q. Zhang, W.-T. Wang, C.-Y. Chi, T. Wächter, J.-W. Chen, C.-Y. Tsai, Y.-C. Huang, M. Zharnikov, Y. Tai, D.-J. Liaw, Energy Environ. Sci., 2018, 11, 682-691.

    無法下載圖示 全文公開日期 2024/01/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE