簡易檢索 / 詳目顯示

研究生: 郭東霖
Dong-Lin Kuo
論文名稱: 含有具對咔唑乙炔和萘乙炔單元的嵌段共聚物之合成與鑑定
Synthesis and Characterization of Block Copolymers Containing Carbazolevinylene and Naphthalenevinylene Units
指導教授: 游進陽
Chin-Yang Yu
口試委員: 陳志堅
Jyh-Chien Chen
崛江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 130
中文關鍵詞: 共軛高分子咔唑萘烯開環歧化聚合反應嵌段共聚合物自組裝現象
外文關鍵詞: in situ nanoparticlization of conjugated polymers
相關次數: 點閱:358下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討共軛高分子含有咔唑及萘烯分子的合成與性質之相關性。主要以合成及鑑定聚咔唑及聚咔唑與聚萘烯之嵌段共聚合物為主。為了精確地控制聚合物之分子量、重複單元比和降低其多分散性指數,開環歧化聚合反應將用於合成本論文中的所有高分子,並統一使用快速起始反應之格拉布三代催化劑。
    預期之嵌段共聚合物中,咔唑及萘烯分子比例應為20:5與40:5,但確切比例無法在核磁共振氫譜與凝膠滲透層析中得知。
    聚合物之熱性質、電化學性質與光學性質亦在此論文中呈現,而最獨特之性質為形態學之性質,透過原子力顯微鏡,嵌段共聚合物之獨特的自組裝現象將在本篇中有詳細的探討。此自組裝主要的動力來源為不溶多數有機溶劑之萘烯嵌段分子間堆積效應進而排列形成獨特之奈米粒子。


    The aim of this thesis is to synthesize and characterize the conjugated polymers containing carbazole vinylene and naphthalene vinylene units with different volume fraction via ring-opening metathesis polymerization (ROMP). In order to control the molecular weights and narrow polydispersities of polymers, the relatively fast-initiation ruthenium catalyst such as 3rd generation Grubbs’ initiator was selected in this thesis.
    The predict ratio of carbazolevinylene and naphthalenevinylene are 20:5 and 40:5. However, the block copolymers were too hard to investigate the block ratio of the naphthalenevinylene and carbazolevinylene units by 1H nuclear magnetic resonance spectroscopy and measure their molecular weights by gel permeation chromatography due to their poor solubility. Optical, thermal and electrochemical properties of polymers were also investigated by differential scanning calorimeter, thermogravimetric analysis, UV-vis absorption, photoluminescence spectroscopy and cyclic voltammetry. The morphology study of polymer films was examined by atomic force microscopy (AFM) to observe the unique self-assembly behavior of the polymers which is called in situ nanoparticlization of conjugated polymers.

    Table of content Abstract 1 中文摘要 2 Chapter1. Introduction and Aims 5 1. Introduction 6 1.1 Conjugated polymers 7 1.2 Copolymers 9 1.3 Ring opening metathesis polymerization 12 1.4 Synthesis of poly(arylenevinylene)s (PAVs) 15 1.5 In situ self-assembly 22 1.6 Aim of the project 27 1.7 References 28 Chapter 2. Results and Discussion 33 2.1 Synthesis and characterization of monomers 34 2.1.1 Synthesis of 19, 49-dioctyl-19H, 49H-1, 4(3,6)-dicarbazolacyclohexaphane-2,5-diene (4) 34 2.1.2 Synthesis of 1, 4, 7(2, 6)-trinaphthalenacyclononaphane-2, 5, 8-triene (11) and 1, 4(2, 6)-dinaphthalenacyclohexaphane-2, 5-diene (13) 40 2.1.3 Photocyclization of monomer 13 50 2.1.4 Structure relationship of target molecules 56 2.2 Synthesis and characterization of polymers 60 2.2.1 Synthesis of poly (N-octyl-carbazole-3,6-vinylene) homo polymers P1 & P2 60 2.2.2 Synthesis of poly(N-octyl-carbazole-3,6-vinylene) -b-(naphthalene-2,6-vinylene) block copolymers P3~P6 63 2.3 Properties of polymers 69 2.3.1 Molecular weights of polymers 69 2.3.2 Optical properties of polymers 70 2.3.3 Thermal properties of polymers 73 2.3.4 Electrochemical properties of polymers 75 2.3.5 Morphology study of polymer films 78 2.4 References 86 Chapter 3. Conclusion 89 Chapter 4. Experimental section 90 4.1 General procedures 91 4.2 Synthesis of the monomers (4) (11) and (13) 93 4.3 Synthesis of polymers P1-P6 102 Appendix 106 1. 13C, COSY and Single crystal spectra 106 2. Mass spectroscopy 125

    [1] H. Shirakawa, J. Louis, A. G. Macdiarmid, J. C. S. Chem. Commun. 1977, 578–580.
    [2] J. Xu, S. Wang, G. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig, J. W. F. To, S. R. Gagné, J. Park, B. C. Schroeder, C. Lu, J. Y. Oh, Y. Wang, Y. H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J.B. H. Tok1, J.W.Chung1, Z. Bao, Science. 2017, 355, 59–64.
    [3] M. Li, D. K. Mangalore, J. Zhao, J. H. Carpenter, H. Yan, H. Ade, H. Yan, K. Müllen, P. W. M. Blom, W. Pisula, D. M. Leeuw, K. Asadi, Nat. Commun. 2018, 9, 451.
    [4] Y. Liu, F. Wang, J. Chen, X. Wang, H. Lu, L. Qiu, G. Zhang, Macromolecules 2018, 51, 370–378.
    [5] B. J. Eckstein, F. S. Melkonyan, N. Zhou, E. F. Manley, J. Smith, A. Timalsina, R. P. H.Chang, L. X. Chen, A. Facchetti, T. J. Marks, Macromolecules 2017, 50, 1430–1441.
    [6] J. Lee, D. H. Sin, J. A. Clement, C. Kulshreshtha, H. G. Kim, E. Song, J. Shin, H. Hwang, K. Cho, Macromolecules 2016, 49, 9358–9370.
    [7] C. Lang, J. Fan, Y. Gao, M. Liu, Y. Zhang, F. Guo, L. Zhao, Dye. Pigment. 2017, 137, 50–57.
    [8] Q. Niu, R. Rohloff, G. -J. A. H. Wetzelaer, P. W. M. Blom, N. I. Crăciun, Nat. Mater. 2018, 17, 557–562 .
    [9] Z. A. Page, C. Y. Chiu, B. Narupai, D. S.Laitar, S. Mukhopadhyay, A. Sokolov, Z. M. Hudson, R. B. Zerdan, A. J. McGrath, J. W. Kramer, B. E. Barton, C. J. Hawker. ACS Photonics 2017, 4, 631–641.
    [10] X. Guo, M. Baumgarten, K. Müllen, Prog. Polym. Sci. 2013, 38, 1832–1908.
    [11] J. Huang, S. R. Turner, Polym. 2017, 116, 572–586.
    [12] J. Xu, V. Mittal, F. S. Bates, Macromolecules 2016, 49, 6497–6506.
    [13] Y. Qiu, J. C. Worch, A. Fortney, C. Gayathri, R. R. Gil, K. J. T. Noonan, Macromolecules 2016, 49, 4757–4762.
    [14] W. Zhang, Z. Mao, N. Zheng, J. Zou, L. Wang, C. Wei, J. Huang, D. Gao, G. Yu, J. Mater. Chem. C 2016, 4, 9266–9275.
    [15] T. E.Kang, J. Choi, H. H. Cho, S. C. Yoon, B. J. Kim, Macromolecules 2016, 49, 2096–2105.
    [16] S. Brown, Y. Yue, L. J. Kuo, N. Mehio, M. Li, G. Gill, C. Tsouris, R. T. Mayes, T. Saito, S. Dai, Ind. Eng. Chem. Res. 2016, 55, 4139–4148.
    [17] W. R.Gutekunst, C. J. Hawker, J. Am. Chem. Soc. 2015, 137, 8038–8041.
    [18] K. A. Ogawa, A. E. Goetz, A. J. Boydston, J. Am. Chem. Soc. 2015, 137, 1400–1403.
    [19] S. Chang, M. Horie, Chem. Commun. 2015, 51, 9113–9116.
    [20] F. Menk, M. Mondeshki, D. Dudenko, S. Shin, D. Schollmeyer, O. Ceyhun, T. L. Choi, R.Zentel, Macromolecules 2015, 48, 7435–7445.
    [21] J. H.Burroughes, D. D. C.Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539–541.
    [22] L. Segura, N. Martı, M. Hanack, Eur J. Org. Chem. 1999, 643–651.
    [23] J. L. Segura, H. Spreitzer, M. Hanack, Adv. Mater. 1996, 663–666.
    [24] E. Z. Furuggi, H. CIiuyct, G. Cohen, R. Neumunn, Y. Avny, D. Davidov Adv. Mater. 1995, 7, 742–745.
    [25] P. J. Lynch, L. O’Neill, D. Bradley, H. J. Byrne, M. McNamara, Macromolecules 2007, 40, 7895–7901.
    [26] H. Thomas, N. Stuhr-Hansen, F. Westerlund, B. W. Laursen, M. Magnussen, H. O. Sørensen, T. Bjørnholm, J. B. Christensen, Tetrahedron Lett. 2009, 50, 7374–7378.
    [27] P. Anuragudom, J. El-daye, P. Chinwangso, R. C. Advincula, S. Phanichphant, T. R. Lee, Polym. Int. 2011, 60, 660–665.
    [28] G. M. Whitesides, J. P. Mathias, C. T.Seto, Science 1991, 254, 1312–1319.
    [29] Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.
    [30] J. C. van Hest, D. A. Delnoye, M. W. Baars, M. H. van Genderen, E. W. Meijer, Science 1995, 268, 1592–1595.
    [31] A.Blanazs, S. P. Armes, A. J. Ryan, Macromol. Rapid Commun. 2009, 30, 267–277.
    [32] A. O. Moughton, M. A. Hillmyer, T. P. Lodge, Macromolecules 2012, 45, 2–19.
    [33] A. H. Gröschel, A. H. E. Müller, Nanoscale 2015, 7, 11841–11876.
    [34] J. F. Lutz, J. M. Lehn, E. W. Meijer, K. Matyjaszewski, Nat. Rev. Mater. 2016, 1, 1-14.
    [35] A. H. Gröschel, A. Walther, T. I. Löbling, F. H. Schacher, H. Schmalz, A. H. E. Müller, Nature 2013, 503, 247–251.
    [36] Z. Li, N. S. Lee, K. L. Wooley, J. Am. Chem. Soc. 2010, 132, 21–23.
    [37] Y. Huang, Y. Mai, X. Yang, U. Beser, J. Liu, F. Zhang, D. Yan, K. Müllen, X. Feng, J. Am. Chem. Soc. 2015, 137, 11602–11605.
    [38] A. Ghosh, M. Haverick, K. Stump, X. Yang, M. F. Tweedle, J. E. Goldberger, J. Am. Chem. Soc. 2012, 134, 3647–3650.
    [39] N. J. Warren, S. P. Armes, J. Am. Chem. Soc. 2014, 136, 10174–10185.
    [40] C. E. Boott, J. Gwyther, R. L. Harniman, D. W. Hayward, I. Manners, Nat. Chem. 2017, 9, 785–792.
    [41] S. Y. Khor, N. P. Truong, J. F. Quinn, M. R. Whittaker, T. P. Davis, ACS Macro Lett. 2017, 6, 1013–1019.
    [42] D. Zhou, S. Dong, R. P. Kuchel, S. Perrier, P. B. Zetterlund, Polym. Chem. 2017, 8, 3082–3089.
    [43] J. Tan, X. Li, R. Zeng, D. Liu, Q. Xu, J. He, Y. Zhang, X. Dai, L. Yu, Z. Zeng, L. Zhang, ACS Macro Lett. 2018, 7, 255–262.
    [44] T. L. Choi, S. Shin, F.Menk, Y. Kim, J. Lim, K. Char, R. Zentel, J. Am. Chem. Soc. 2018, 140, 6088–6094.
    [45] I. H. Lee, P. Amaladass, K. Y. Yoon, S. Shin, Y. J. Kim, I. Kim, E. Lee, T. L. Choi, J. Am. Chem. Soc. 2013, 135, 17695–17698.
    [46] K. Y. Yoon, I. H. Lee, K. O. Kim, J. Jang, E. Lee, T. L. Choi, J. Am. Chem. Soc. 2012, 134, 14291–14294.
    [47] S. Shin, K. Y. Yoon, T. L.Choi, Macromolecules 2015, 48, 1390–1397.
    [48] B. Charleux, G. Delaittre, J. Rieger, F. D’agosto, Macromolecules 2012, 45, 6753–6765.
    [49] M. J. Derry, L. A. Fielding, S. P. Armes, Prog. Polym. Sci. 2016, 52, 1–18.
    [50] J. Yeow, J. Xu, C. Boyer, ACS Macro Lett. 2015, 4, 984–990.
    [51] W. M. Wan, X. L. Sun, C. Y. Pan, Macromol. Rapid Commun. 2010, 31, 399–404.
    [52] S. Shin, M. L. Gu, C. Y. Yu, J. Jeon, E. Lee, T. L. Choi, J. Am. Chem. Soc. 2018, 140, 475–482.
    [53] K. Y. Yoon, S. Shin, Y. J. Kim, I. Kim, E. Lee, T. L. Choi, Macromol. Rapid Commun. 2015, 36, 1069–1074.
    [54] I. H. Lee, P. Amaladass, I. Choi, V. W. Bergmann, S. A. L. Weber, T. L. Choi, Polym. Chem. 2016, 7, 1422–1428.

    無法下載圖示 全文公開日期 2023/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE