簡易檢索 / 詳目顯示

研究生: 柯廷翰
Ting-Han - Ke
論文名稱: 合成具并苯共軛橋基之新型染料敏化太陽能電池染料及其光物理性質研究
Study on Synthesis and Photophysics of New DSSC dyes containing acenes as π-bridge
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 張家耀
Jia-Yaw Chang
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 139
中文關鍵詞: 染料敏化太陽能電池蔥醌
外文關鍵詞: DSSCs, naphthalene
相關次數: 點閱:338下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了解決世界能源危機,乾淨無汙染的再生能源便是目前世界引頸期盼的目標,而其中最不會受到地形、環境限制的再生能源便是太陽能電池的發展,而目前以含有釕 (Ru) 金屬的染料敏化太陽能電池擁有最好的轉化效率,但是因為其來源稀少,製作成本也相對提高,才開始有了不須昂貴的釕 (Ru) 金屬也可以合成出太陽能電池用染料的研究出現。
    在本研究論文中,我們利用推拉電子基以及共軛橋基 (D-π-A) 設計出三種不同的太陽能電池用染料對比上染料性質探討中常被用來比較的染料TTC,而主要針對的方向則是對於共軛橋基以及推電子基之間不同的構成形狀所造成的光物理性質差異探討;實驗中利用核磁共振光譜圖譜 (NMR) 以及質譜儀 (MASS) 鑑定染料分子結構,再經由紫外 - 可見光光譜儀測試出來的光譜以及循環電位儀 (CV) 來加以探討染料分子的光電性質。實驗結果可以發現共軛橋基使用Naphthalene (1,4-Naphthalene / 2,6-Naphthalene) 時,較為平面的2,6-Naphthalene比起1,4-Naphthalene來說,2,6-Naphthalene的吸收波長較為紅移;使用Anthracene (1,4- Anthracene) 在低極性溶劑下中可以維持最大吸收光譜波長在420 nm左右,但是到了溶劑環境極性較高的環境下,由於共平面被嚴重影響,吸收效果不佳。


    For the issue of energy crisis, the well-known characteristic of solar cell that can use the endless energy from sunlight being noticed these years, but the photo-to-electron conversion efficiency still can’t reach the expectation. To spread application range of the solar energy, we use Triphenylamine as electron donor groups and also have two different substances (Naphthalene and Anthracene) as π-bridge to synthesize the dyes for solar cell, and this structural modification hopefully increase the range of maximum band to visible light region.
    In our research, we use nuclear magnetic resonance spectroscopy (NMR) and mass spectroscopy (MASS) to identify the structures and measure UV-Visible spectroscopy and Cyclic Voltammetry diagram to discuss the photo-physical and electrochemical properties. It turns out that using Naphthalene (2,6-Naphthalene) as π bridge may have much more stable absorption area of wavelength in UV-Visible spectroscopy and some photo-physical property even could beat the reference dye: TTC, which is often used in DSSC research.

    第一章 緒論 1 1.1 前言 1 1.2 太陽能電池簡介 2 1.3 染料敏化太陽能電池的歷史發展 3 1.4 染料敏化太陽能電池的構造及光電轉換機制 4 1.5 染料敏化太陽能電池效率的影響因素 5 1.6 染料光敏化劑 6 1.6.1染料光敏化劑條件 6 1.6.2釕金屬錯合物染料 8 1.6.3非有機金屬染料 11 1.7 鈴木偶聯反應 14 1.8 文獻回顧 15 1.9 研究動機及目的 16 第二章 結果與討論 17 2.1 化合物之合成與討論 17 2.2 各化合物於不同溶劑中之光物理研究 20 2.3 同溶劑下各化合物之光物理研究 28 2.4 各化合物之消光係數 32 2.5 各化合物之電化學性質探討 38 2.6 各化合物的理論計算結果與實驗結果討論 42 2.8 結論 46 2.9 未來展望 47 第三章 實驗部分 48 3.1 實驗儀器 48 3.2 實驗藥品與溶劑 50 3.3 光物理定性的量測方法 52 3.4 消光係數的定量量測方法 53 3.5 氧化還原電位的測量及計算方法 54 3.6 各化合物結構分子式與分子量 56 3.7 實驗步驟 59 第四章 參考文獻 71 附 錄 75

    1. Sahoo, S. K., Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review. Renewable and Sustainable Energy Reviews 2016, 59, 927-939.
    2. 知識通訊評論月刊. 2008年9月, 第71期, 4-12.
    3. Kazmerski, L. L., Solar photovoltaics R&D at the tipping point: A 2005 technology overview. Journal of Electron Spectroscopy and Related Phenomena 2006, 150 (2-3), 105-135.
    4. Conibeer, G., Third-generation photovoltaics. Materials Today 2007, 10 (11), 42-50.
    5. Singh, G. K., Solar power generation by PV (photovoltaic) technology: A review. Energy 2013, 53, 1-13.
    6. Kim, J.; Rivera, J. L.; Meng, T. Y.; Laratte, B.; Chen, S., Review of life cycle assessment of nanomaterials in photovoltaics. Solar Energy 2016, 133, 249-258.
    7. 馬振基; 張正華; 李陵嵐; 葉楚平; 楊平華, 有機與塑膠太陽能電池. 五南, 台北市, 第三章, 民 2007, 96.
    8. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications 2015, 23 (1), 1-9.
    9. Wenham, S. R.; Green, M. A.; Watt, M. E.; Corkish, R.; Sproul, A., Applied photovoltaics, 2007. ARC Centre for Advanced Silicon Photovoltaics and Photonics.
    10. 沈輝, 曾祖勤, 馬振基, 太陽能光電技術, 五南, 2010, 3.
    11. Spear, W.; Le Comber, P., Substitutional doping of amorphous silicon. Solid state communications 1993, 88 (11), 1015-1018.
    12. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
    13. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398.
    14. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-1237.
    15. You, J.; Hong, Z.; Yang, Y. M.; Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.; Zhou, H., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. 2014.
    16. Hurd, F.; Livingston, R., The Quantum Yields of Some Dye-sensitized Photooxidations. The Journal of Physical Chemistry 1940, 44 (7), 865-873.
    17. Marchetti, A. P.; Kearns, D. R., Investigation of singlet-triplet transitions by the phosphorescence excitation method. IV. The singlet-triplet absorption spectra of aromatic hydrocarbons. Journal of the American Chemical Society 1967, 89 (4), 768-777.
    18. Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T., Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. 1976.
    19. Matsumura, M.; Matsudaira, S.; Tsubomura, H.; Takata, M.; Yanagida, H., Dye sensitization and surface structures of semiconductor electrodes. Industrial & Engineering Chemistry Product Research and Development 1980, 19 (3), 415-421.
    20. O’regan, B.; Grfitzeli, M., A low-cost, high-efficiency solar cell based on dye-sensitized. nature 1991, 353 (6346), 737-740.
    21. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society 2005, 127 (48), 16835-16847.
    22. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. science 2011, 334 (6056), 629-634.
    23. Gong, J.; Liang, J.; Sumathy, K., Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews 2012, 16 (8), 5848-5860.
    24. Mahmood, A., Triphenylamine based dyes for dye sensitized solar cells: A review. Solar Energy 2016, 123, 127-144.
    25. Ferber, J.; Stangl, R.; Luther, J., An electrical model of the dye-sensitized solar cell. Solar Energy Materials and Solar Cells 1998, 53 (1), 29-54.
    26. 陳品嫻, 具噻吩并之染料敏化太陽能電池染料合成與研究. 2014.
    27. 童永樑, 釕金屬染料在染料敏化太陽電池的演進. 工業材料雜誌 2008, 255, 109-123.
    28. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells. Chemical reviews 2010, 110 (11), 6595-6663.
    29. Nath, N. C. D.; Kim, J. C.; Kim, K. P.; Yim, S.; Lee, J.-J., Deprotonation of N3 adsorbed on TiO 2 for high-performance dye-sensitized solar cells (DSSCs). Journal of Materials Chemistry A 2013, 1 (43), 13439-13442.
    30. Zhang, X. L.; Huang, F.; Chen, Y.; Cheng, Y.-B.; Amal, R., An over 10% enhancement of dye-sensitized solar cell efficiency by tuning nanoparticle packing. RSC Advances 2013, 3 (38), 17003-17006.
    31. Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Grätzel, M., High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chemical Communications 2002, (24), 2972-2973.
    32. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature materials 2003, 2 (6), 402-407.
    33. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Humphry‐Baker, R.; Comte, P.; Aranyos, V.; Hagfeldt, A.; Nazeeruddin, M. K.; Grätzel, M., Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye‐Sensitized Solar Cells. Advanced Materials 2004, 16 (20), 1806-1811.
    34. Wang, Z.-S.; Yamaguchi, T.; Sugihara, H.; Arakawa, H., Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir 2005, 21 (10), 4272-4276.
    35. Matar, F.; Ghaddar, T. H.; Walley, K.; DosSantos, T.; Durrant, J. R.; O'Regan, B., A new ruthenium polypyridyl dye, TG6, whose performance in dye-sensitized solar cells is surprisingly close to that of N719, the ‘dye to beat’for 17 years. Journal of Materials Chemistry 2008, 18 (36), 4246-4253.
    36. Sengupta, D.; Das, P.; Mondal, B.; Mukherjee, K., Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application–A review. Renewable and Sustainable Energy Reviews 2016, 60, 356-376.
    37. Khan, M. Z. H.; Al-Mamun, M. R.; Halder, P. K.; Aziz, M. A., Performance improvement of modified dye-sensitized solar cells. Renewable and Sustainable Energy Reviews 2016.
    38. Hara, K.; Sayama, K.; Ohga, Y.; Shinpo, A.; Suga, S.; Arakawa, H., A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chemical Communications 2001, (6), 569-570.
    39. Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New Journal of Chemistry 2003, 27 (5), 783-785.
    40. Horiuchi, T.; Miura, H.; Uchida, S., Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chemical Communications 2003, (24), 3036-3037.
    41. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S., High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society 2004, 126 (39), 12218-12219.
    42. Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Péchy, P.; Grätzel, M., High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications 2008, (41), 5194-5196.
    43. Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T.; Yanagida, S., Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chemistry of materials 2004, 16 (9), 1806-1812.
    44. Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L., Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. The Journal of organic chemistry 2007, 72 (25), 9550-9556.
    45. Hagberg, D. P.; Yum, J.-H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.; Grätzel, M., Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. Journal of the American Chemical Society 2008, 130 (19), 6259-6266.
    46. Das, P.; Linert, W., Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coordination Chemistry Reviews 2016, 311, 1-23.
    47. Mishra, A.; Fischer, M. K.; Bauerle, P., Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed Engl 2009, 48 (14), 2474-99.
    48. Chitpakdee, C.; Namuangruk, S.; Suttisintong, K.; Jungsuttiwong, S.; Keawin, T.; Sudyoadsuk, T.; Sirithip, K.; Promarak, V.; Kungwan, N., Effects of π-linker, anchoring group and capped carbazole at meso-substituted zinc-porphyrins on conversion efficiency of DSSCs. Dyes and Pigments 2015, 118, 64-75.
    49. Akiyama, S.; Nakagawa, M.; Nishimoto, K., Electronic Spectra of Phenanthrene Derivatives. Effect of Substitution. Bulletin of the Chemical Society of Japan 1971, 44 (4), 1054-1062.
    50. Somera, N. M.; Stachissini, A. S.; do Amaral, A. T.; do Amaral, L., Kinetics and mechanism for the formation of phenylhydrazone from benzaldehydes, naphthaldehydes, and formyl-1, 6-methano [10] annulenes. Journal of the Chemical Society, Perkin Transactions 2 1987, (12), 1717-1722.
    51. Wang, H. M.; Wenz, G., Solubilization of Polycyclic Aromatics in Water by γ‐Cyclodextrin Derivatives. Chemistry–An Asian Journal 2011, 6 (9), 2390-2399.
    52. Ikbal, M.; Banerjee, R.; Atta, S.; Dhara, D.; Anoop, A.; Singh, N. P., Synthesis, Photophysical and Photochemical Properties of Photoacid Generators Based on N-Hydroxyanthracene-1, 9-dicarboxyimide and Their Application toward Modification of Silicon Surfaces. The Journal of organic chemistry 2012, 77 (23), 10557-10567.

    QR CODE