簡易檢索 / 詳目顯示

研究生: 周士本
CHOU,SHIH-PEN CHOU
論文名稱: 應用微通道反應器於萘硝化反應製程之研究
Study on Nitration process of Naphthalene with Using Microreactor
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 劉志成
Jhy-Chern Liu
何郡軒
Jinn-Hsuan Ho
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 101
中文關鍵詞: :微反應器芳香族硝化反應萘硝化反應二硝基萘製程程序
外文關鍵詞: Microreactor, dinitronaphthalene process program, naphthalene nitration reaction, aromatic nitration reaction
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以萘硝化反應為主題,反應過程可分成微反應器與批次反應器兩個步驟,以設計高效安全的生產程序。
    第一部分為萘反應成一硝基萘,依據硝酸濃度不同其反應時間為數十秒至數分鐘,此階段反應為快速放熱程序而容易失控,而微反應器具有體積小、熱質傳快速、反應時間短優點,因此此步驟適合使用微反應器操作,可降低爆炸風險。但微反應器因內部管路結構關係,需要控制反應過程中固體產物的析出量,以避免管路堵塞的現象。應用微反應器可有效避免溫度快速上升的危險,此階段反應物為萘、硝酸與產物1-硝基萘在反應溫度為80˚C均呈現液態,並可在滯留時間2分鐘內達成完全轉化。
    第二部分為一硝基萘反應成二硝基萘,在無有機溶劑的反應環境下,產物二硝基萘在硝酸內溶解度極低,導致反應過程中二硝基萘固體會持續析出,因此選用批次反應器來進行,目前優化的參數為溫度80˚C、硝酸濃度70wt%與反應時間2hr,其反應時間較長,但可避免有機溶劑以及減少硝酸使用量,可降低在後續的分離與廢酸液處理程序成本,因此,選用批次反應器進行設計。
    本研究過程中,物料經過預熱進入計量泵浦通入微反應器反應後,產物一硝基萘與剩餘硝酸再進入批次反應器反應,反應完成後降溫冷卻,將硝酸與二硝基萘固液分離,70%的剩餘酸液可以分離出再添加適量的發煙硝酸即可回用於第一部分,固體產物進行鹼洗、水洗、有機溶劑清洗、烘乾與研磨處理,即可進行氫化反應以製成1,5-二氨基萘與1,8-二氨基萘。在成本考量下,以無有機溶劑與硝酸回用率的概念去進行程序設計,產物二硝基萘與廢硝酸產生量比為1:0.95,比傳統釜式製程具有高效、安全、低污染的優勢,本研究可作為實際量產設計之參考依據。


    The study focused on the nitration reaction of naphthalene. The reaction was divided into two steps, microreactor and batch reactor, to design an efficient and safe production procedure.
    The first part was the coversion of naphthalene to mononitronaphthalene. The reaction time is from tens of seconds to several minutes, which is varied with the concentration of nitric acid. The reaction at this stage is a extremely rapid exothermic process, and is thus easily out of control. The advantages of microreactor are small volume, large heat- and mass-transfer rate, and short reaction time, so this step is suitable with using microreactor, resulting in reducing the risk of explosion. But on the other hand, it is necessary to control the amount of solid products precipitated during the reaction. The blockage of pipeline will be occurred easily due to the internal pipeline structure . The danger of rapid temperature rise can be effectively avoided in the microreactor system. At this stage, the reactants and product, naphthalene, nitric acid and 1-nitronaphthalene, were kept at liquid phase under 80˚C, and the complete conversion was achieved in 2 minute of residence time.
    The second reaction is the nitration of mononitronaphthalene to dinitronaphthalene. The solubility dinitronaphthalene in nitric acid is very small in the absence of organic solvents, resulting in the continuous precipitation of dinitronaphthalene during the reaction period. Therefore, the batch reactor is sleceted for this step. The optimized parameters are 80˚C, 70 wt% of nitric acid, and 2 hr of reaction time for the reduction of amount of nitric acid without using organic solvents. The ease of subsequent separation and decrease in treatment cost of waste acid are achieved by this design.
    In the process of this research, the preheated feedstcoks were fed into the microreactor by an metering pump, and then the mononitronaphthalene and residaul nitric acid were conducted to the batch reactor for further reaction. After the completeness of reaction, the precipitate of dinitronaphthalene was obtained after the cooling and solid-liquid separation steps. The 70% of residual acid liquid can be reused in the first part by adding an appropriate amount of fuming nitric acid. The solid product was further treated in alkaline washing, water washing, organic solvent washing, drying and grinding steps, and then it can be hydrogenated to produce 1,5- diaminonaphthalene and 1,8-diaminonaphthalene. The concepts of absence of organic solvent and recylce of nitric acid were applied to design this process to minimize the cost. The ratio of dinitronaphthalene to waste nitric acid is 1:0.95, which is more efficient, safer and less waste production than the traditional kettle process. This research can be used as a reference basis for mass production design.

    摘要 I 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與內容 2 1.3 微反應器 3 1.3.1 溫度不均勻 3 1.3.2 濃度不均勻 4 1.3.3 放大效應與選擇率 5 1.4 文獻回顧 7 1.4.1 1-硝基萘合成 7 1.4.2 二硝基萘氣相合成 8 1.4.3 二硝基萘液相合成 10 1.4.4 二硝基萘對環境的影響 12 1.4.5 二硝基萘的檢測 13 1.4.6 二硝基萘分離方式 14 1.4.7 二硝基萘反應放熱 16 第二章 實驗部分 18 2.1 實驗儀器 18 2.2 儀器原理介紹 21 2.2.1 核磁共振儀 21 2.2.2 高效液相層析儀 22 2.3 儀器量測方法 23 2.3.1 核磁共振儀量測方法 23 2.3.2 高效液相層析儀量測方法 24 2.4 藥品及溶劑 26 2.5 化合物結構、分子量、分子式 27 2.6 實驗原理 30 2.6.1 硝化原理 30 2.6.2 硝酸濃度使用說明 30 2.7 實驗流程簡圖 31 2.8 化合物合成步驟 32 2.8.1 Batch合成1-Nitronaphthalene 32 2.8.2 Batch合成Dinitronaphthalene 35 2.8.3 室溫進料Microreactor反應 41 2.8.4 熔融態萘進料Microreactor反應 43 2.8.5 熔融1-硝基萘進料連續攪拌反應器 45 第三章 結果與討論 47 3.1 三硝基萘生成條件研究 47 3.1.1 硝酸濃度影響 47 3.1.2 硝化放熱及溫度影響 48 3.1.3 放置實驗 49 3.2 反應條件對於1,5二硝基萘、1,8二硝基萘比例影響 51 3.3 Batch反應條件 53 3.3.1 萘反應成1-硝基奈 53 3.3.2 1-硝基萘反應成二硝基萘 54 3.3.3 反應條件與反應器選擇 54 3.4 室溫進料Microreactor連續生產二硝基萘 56 3.4.1 室溫進料生產3公斤的二硝基萘產物 57 3.5 Batch反應中起始物與硝酸的重量百分比 59 3.6 計算1-硝基萘反應成二硝基萘的動力學參數 62 3.6.1 硝酸過量實驗 62 3.6.2 15wt%1-硝基萘硝化反應 65 3.7 連續攪拌反應器確認動力學參數 68 3.8 Microreactor熱交換速率計算 70 3.8.1 產物出料溫度計算 74 第四章 結論 77 4.1.1 質量平衡圖 78 4.1.2 安全考量 81 4.1.3 熱處理 81 4.1.4 雜質三硝基萘 81 4.1.5 發煙硝酸使用說明 82 4.2 未來展望 83 第五章 參考文獻 85

    [1] 1,5-二硝基萘
    https://baike.baidu.com/item/1%2C5-%E4%BA%8C%E7%A1%9D%E5%9F%BA%E8%90%98
    [2] 環保趨嚴大背景下1,8-二氨基萘產量下滑
    http://www.newsijie.com/chanye/huagong/jujiao/2019/0831/11249391.ht mL
    [3] 江蘇響水天嘉宜化工廠爆炸事故https://zh.wikipedia.org/wiki/2019%E5%B9%B4%E6%B1%9F%E8%8B%8F%E5%93%8D%E6%B0%B4%E5%A4%A9%E5%98%89%E5%AE%9C%E5%8C%96%E5%B7%A5%E5%8E%82%E7%88%86%E7%82%B8%E4%BA%8B%E6%95%85
    [4] Microreactor與傳統化工製程相關性能圖片
    https://www.sigmaaldrich.com/technicaldocuments/articles/chemfiles/microreactor-technology.ht mL
    [5] Wan-po yin and Min shi*, ''Indium Triflate as a Recyclable Catalyst for the Nitration of Aromatic Compounds without a Halogenated Solvent,'' JOURNAL OF CHEMICAL RESEARCH, pp. 549–551, 2006.
    [6] Abdol r. hajipour and Arnold e. ruoho, ''A FAST AND MILD METHOD FOR NITRATION OF AROMATIC RINGS, '' Phosphorus, Sulfur, and Silicon, vol. 179, pp. 221–226, 2004.
    [7] 彭新華、韓松、汪浩才、蘇傳好、朱志峰。1,5-二硝基萘和1,8-二硝基萘製備方法。中華人民共和國發明專利第102827007 A號,2012。
    [8] Zixiao huang, Qingzhu zhang and Wenxing wang, ''Mechanical and Kinetic Study on Gas-Phase Formation of Dinitronaphthalene from 1- and 2-Nitronaphthalene, '' Chemosphere, vol. 156, pp. 101–110, 2016.
    [9] Pingle liu , Wei xiong, Xiaofei wang , Kun huang, Fang hao , liangjie wang and he’an luo, ''Regioselective Nitration of Naphthalene over HZSM-5- Supported Phosphotungstic Acid, '' Res Chem Intermed, vol. 41, pp. 453.3–4543, 2015.
    [10] M・勃蘭特,S・克菜,G.韋格納。製備有高比例1,5-二硝基萘的二硝基異構物混合物的方法。中華人民共和國發明專利第1253427 C號,2006。
    [11] H.-P・沙,V.Y・波普科瓦,B・M・拉斯金,A·S・麥林,S·B・沃爾科瓦。1,5-二硝基萘的製備方法。中華人民共和國發明專利第100516021 C號,2009。
    [12] Friedrich Dirholz, Remscheid; Josef Heinen; Adolf Hamers, both of Leverkusen. PROCESS FOR PREPARING DINITRONAPHTHALENE. United States Patent NO. 3,998,893, 1976.
    [13] 劉建武,張躍,嚴生虎,辜順林,馬曉明,沉介發。連續流微通道反應合成1,5-二硝基萘和1,8-二硝基萘的方法。中華人民共和國發明專利第104478729 A號,2015。
    [14] Yong xie, cunbin du, Yang cong, Jian wang, Shuo han and Hongkun zhao, ''Determination and Modeling of Binary and Ternary Solid-Liquid Phase Equilibrium for the Systems Formed by 1,8-Dinitronaphthalene and 1,5-Dinitronaphthalene and N-Methyl-2-Pyrrolidone, '' J. Chem. Thermodynamics, vol. 101, pp. 363–371, 2016.
    [15] 段建軍。一種1-硝基萘的連續生產系統。中華人民共和國發明專利第206927829號,2018。
    [16] Hiroshi tokiwa, Reiko nakagawa and Kazumi horikawa, ''Mutagenic/Carcinogenic Agents in Indoor Pollutants; the Dinitropyrenes Generated by Kerosene Heaters and Fuel Gas and Liquefied Petroleum Gas Burners, '' Mutation Research, vol. 157, pp. 39–47, 1985.
    [17] Tobias bausinger, Ulrich dehner and Johannes preuß, ''Determination of Mono-, Di- and Trinitronaphthalenes in Soil Samples Contaminated by Explosives, '' Chemosphere, 57, 821–829, 2004.
    [18] Tohru ikegami, Takeshi hara, Hiroshi kimura, Hiroshi kobayashi, Ken hosoya, Karin cabrera and Nobuo tanaka, ''Two-Dimensional Reversed-Phase Liquid Chromatography Using Two Monolithic Silica C18 Columns and Different Mobile Phase Modifiers in the Two Dimensions, '' Journal of Chromatography A, vol. 1106, pp. 112–117, 2006.
    [19] Heinz Ulrich Blank, Odenthal; Friedrich Durholz, Remscheid; Guido Skipka, Leverkusen. PROCESS FOR ISOLATING DNTRONAPHTHALENES. United States Patent NO. 4,053,526.1977.
    [20] Mehmet balcan, Sevgi arzik and Turhan altunata, ''The Determination of the Heats of Combustion and the Resonance Energies of Some Substituted Naphthalenes, '' Thermochimica Act, vol. 278, pp. 49–56, 1996.
    [21] Manuel a.v. ribeiro da silva , Luı´sa m.p.f. amaral, Ana filipa l.o.m. santos, & Jose´ r.b. gomes, ''Thermochemistry of Nitronaphthalenes and Nitroanthracenes, '' J. Chem. Thermodynamics, 38, 748–755. 2006.
    [22] Philip biessey and Marcus grunewald, ''Influence of Design Parameters on Hydrodynamics and Heat Transfer of a Modularized Millireactor, '' Chemical Engineering Technology, vol. 38, pp. 1–8, 2015.

    無法下載圖示 全文公開日期 2030/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE