簡易檢索 / 詳目顯示

研究生: 江易翰
Yi-Han Jiang
論文名稱: 二階段化學氣相沉積法成長二硫化鉬與二硒化鎢之 異質接面
Two-step chemical vapor deposition growth of MoS2-WSe2 heterojunction
指導教授: 李奎毅
Kuei-Yi Lee
林保宏
Pao-Hung Lin
口試委員: 何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
林保宏
Pao-Hung Lin
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 69
中文關鍵詞: 二硫化鉬二硒化鎢化學氣相沉積法
外文關鍵詞: MoS2, WSe2, chemical vapor deposition
相關次數: 點閱:467下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用兩種不同的二維材料之過渡金屬硫屬化合物MoS2與WSe2做異質接面的結合並進行探討其接面特性. 本論文以熱化學氣相沉積法方式, 利用固定比例的三氧化鎢與硒粉末, 三氧化鉬與硫粉末成長WSe2與MoS2於藍寶石基板上, 分別以光學顯微鏡, 拉曼光譜儀, 光激螢光光譜, X射線光電子能譜學及掃瞄式電子顯微鏡進行分析此材料之樣品大小, 形貌, 能隙大小, 薄膜層數及元素構成. 在場效電晶體電壓-電流特性量測中以曲線最低點所落的位置判斷出二硒化鎢為 p 型半導體材料而二硫化鉬為 n 型半導體材料. 本論文以控制成長位置的方法, 在大面積的二硒化鎢上直接沉積二硫化鉬, 成功地製作異質接面二極體元件, 在進行電性量測後發現到此異質接面有明顯的整流效果. 將結果進一步變化, 製備出三端的pnp異質接面, 在電壓-電流特性曲線量測中得到其操作行為與一般的電晶體相似, 能得到其飽和區與工作區的範圍, 最後在應用於開關電路.


    In this study, we demonstrated the characteristic and synthesis of heterojunction which was consisted of p-type tungsten diselenide (WSe2) and n-type molybdenum disulfide (MoS2). We used chemical vapor deposition (CVD) method to synthesize WSe2 and MoS2 on sapphire substrate. Optical microscope (OM) and scanning electron microscope (SEM) image was used to examine the morphology of thin films. Raman spectroscopy, photoluminescence spectroscopy, atomic force microscopy (AFM) and X-ray photoelectron spectroscope (XPS) indicated the thickness, band gap energy and the elements composition of the as-prepared WSe2 and MoS2 samples. We showed electrical property of WSe2 and MoS2 transistors, WSe2 was typical of field effect transistor (FET) devices with p-type channel, and MoS2 was typical of FET devices with n-type channel. In order to fabricate the pn heterojunction diode, WSe2 was grown in the first step, followed by MoS2 CVD growth on the top surface of WSe2. In the voltage-current characteristic measurement, we demonstrated a clear current rectification behavior in the MoS2/WSe2 heterojunction diode, and the turn-on voltage was 0.5 V. Finally, we demonstrated the pnp heterojunction based on WSe2/MoS2/WSe2. The collector current increased as the base current became smaller. Compared to traditional bipolar junction transistor (BJT), we can find out the saturation region and the active region in the voltage-current plot. Therefore, we applied the pnp heterojunction to the switch circuit, we expect the heterojunction can be widely applied to the optoelectronic devices.

    中文摘要-------------------------------------------------------------------------- I 英文摘要-------------------------------------------------------------------------- II 致謝--------------------------------------------------------------------------------- III 目錄--------------------------------------------------------------------------------- IV 圖索引------------------------------------------------------------------------------ VII 表索引------------------------------------------------------------------------------ X 第一章 緒論---------------------------------------------------------------------- 1 1.1二維半導體材料----------------------------------------------------------- 1 1.2 過渡金屬硫屬化合物--------------------------------------------------- 2 1.3 二硫化鉬與二硒化鎢--------------------------------------------------- 4 1.4 過渡金屬硫屬化合物合成與製備------------------------------------ 5 1.5 pn接面二極體------------------------------------------------------------- 7 1.5.1 pn接面二極體介紹--------------------------------------------------- 7 1.5.2 pn接面二極體操作原理--------------------------------------------- 8 1.6 雙載子接面電晶體------------------------------------------------------ 9 1.6.1 雙載子接面電晶體介紹-------------------------------------------- 9 1.6.2 雙載子接面電晶體操作原理-------------------------------------- 11 1.6.3 異質接面雙載子電晶體-------------------------------------------- 12 1.7 研究背景及動機--------------------------------------------------------- 13 1.7.1 異質接面二極體----------------------------------------------------- 13 1.7.2 pnp異質接面----------------------------------------------------------- 13 第二章 實驗方法與設備------------------------------------------------------- 14 2.1 實驗流程圖--------------------------------------------------------------- 14 2.2 晶體成長與製備--------------------------------------------------------- 15 2.2.1 基板清洗-------------------------------------------------------------- 15 2.2.2 二硒化鎢薄膜成長-------------------------------------------------- 16 2.2.3 二硫化鉬薄膜成長-------------------------------------------------- 18 2.3 分析量測儀器------------------------------------------------------------ 21 2.3.1 拉曼光譜儀----------------------------------------------------------- 21 2.3.2 光激發螢光光譜----------------------------------------------------- 22 2.3.3 X光光電子能譜儀---------------------------------------------------- 23 2.3.4 掃瞄式電子顯微鏡-------------------------------------------------- 24 2.3.5 原子力顯微鏡-------------------------------------------------------- 25 2.3.6 半導體特性量測系統----------------------------------------------- 26 2.4 元件製備與量測--------------------------------------------------------- 27 2.4.1 場效電晶體----------------------------------------------------------- 27 2.4.2 pn異質接面製備與量測--------------------------------------------- 29 2.4.3 pnp異質接面----------------------------------------------------------- 30 第三章 實驗結果與討論------------------------------------------------------- 32 3.1 二硒化鎢特性分析------------------------------------------------------ 32 3.1.1 光學顯微鏡影像圖-------------------------------------------------- 32 3.1.2 原子力顯微鏡-------------------------------------------------------- 33 3.1.3 拉曼光譜圖----------------------------------------------------------- 34 3.1.4 光激發螢光光譜圖-------------------------------------------------- 36 3.1.5 X光光電子能譜------------------------------------------------------- 37 3.1.6 二硒化鎢之電特性分析-------------------------------------------- 39 3.2 二硫化鉬特性分析------------------------------------------------------ 42 3.2.1 光學顯微鏡影像圖-------------------------------------------------- 42 3.2.2 原子力顯微鏡-------------------------------------------------------- 43 3.2.3 拉曼光譜圖----------------------------------------------------------- 44 3.2.4 光激發螢光光譜圖-------------------------------------------------- 45 3.2.5 X光光電子能譜------------------------------------------------------- 46 3.2.6 二硫化鉬之電特性分析-------------------------------------------- 48 3.3 二硫化鉬/二硒化鎢之pn異質接面材料分析---------------------- 50 3.3.1 掃描式電子顯微鏡影像圖----------------------------------------- 50 3.3.2 拉曼光譜圖----------------------------------------------------------- 52 3.3.3 光激發螢光圖-------------------------------------------------------- 53 3.3.4 電特性量測分析----------------------------------------------------- 54 3.3.5 pn異質接面能帶圖--------------------------------------------------- 55 3.4 二硒化鎢/二硫化鉬/二硒化鎢之pnp異質接面--------------------- 56 3.4.1 電特性量測----------------------------------------------------------- 56 3.4.2 開關電路的應用----------------------------------------------------- 59 第四章 結論---------------------------------------------------------------------- 61 參考文獻-------------------------------------------------------------------------- 63

    [1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater., vol. 6, pp. 183-191, 2007.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon
    [3] K. S. Novoselov, "Nobel lecture: graphene: materials in the flatland," Rev. Mod. Phys., vol. 83, pp. 837-849, 2011.
    [4] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun., vol. 146, pp. 351-355, 2008.
    [5] H. Liu, Y. Liu, and D. Zhu, "Chemical doping of graphene," J. Mater. Chem., vol. 21, pp. 3335-3345, 2011.
    [6] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat. Nanotechnol., vol. 6, pp. 147-197, 2011.
    [7] X. Wang, Y. Gong, G. Shi, W.-L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, and E. Ringe, "Chemical vapor deposition growth of crystalline monolayer MoSe2," ACS Nano, vol. 8, pp. 5125-5131, 2014.
    [8] M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, "High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films," Sci. Rep., vol. 5, pp. 106991-106999, 2015.
    [9] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, "High-performance single layered WSe2 p-FETs with chemically doped contacts," Nano Lett., vol. 12, pp. 3788-3880, 2012.
    [10] A. Nourbakhsh, A. Zubair, M. S. Dresselhaus, and T. Palacios, "Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application," Nano Lett., vol. 16, pp. 1359-1425, 2016.
    [11] W. Jaegermann and H. Tributsch, "Interfacial properties of semiconducting transition metal chalcogenides," Progress Surf. Sci., vol. 29, pp. 1-167, 1988.
    [12] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., vol. 7, pp. 699-712, 2012.
    [13] Z. Wang, Q. Su, G.-Q. Yin, J. Shi, H. Deng, J. Guan, M.-P. Wu, Y.-L. Zhou, H.-L. Lou, and Y.-Q. Fu, "Structure and electronic properties of transition metal dichalcogenide MX2 (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries," Mater. Chem. Phys., vol. 147, pp. 1068-1073, 2014.
    [14] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, and D. R. Zahn, "Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2," Opt. Express, vol. 21, pp. 4908-4916, 2013.
    [15] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, "Emerging photoluminescence in monolayer MoS2," Nano Lett., vol. 10, pp. 1271-1276, 2010.
    [16] W. Liu, J. H. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field,” Nano Lett., vol. 13, pp. 1983-1990, 2013.
    [17] J. Huang, L. Yang, D. Liu, J. Chen, Q. Fu, Y. Xiong, F. Lin, and B. Xiang, "Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications," Nanoscale, vol. 7, pp. 4193-4201, 2015.

    [18] M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J. Chen, and J.-H. He, "Monolayer MoS2 heterojunction solar cells," ACS Nano, vol. 8, pp. 8317-8322, 2014.
    [19] R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, "Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes," Nano Lett., vol. 14, pp. 5590-5597, 2014.
    [20] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, "Ultrasensitive photodetectors based on monolayer MoS2," Nat. Nanotechnol., vol. 8, pp. 497-501, 2013.
    [21] N. D. Boscher, C. J. Carmalt, and I. P. Parkin, "Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces," J. Mater. Chem., vol. 16, pp. 122-127, 2006.
    [22] A. Rai, R. Bhattacharya, J. Zabinski, and K. Miyoshi, "A comparison of the wear life of as-deposited and ion-irradiated WS2 coatings," Surf. Coat. Technol., vol. 92, pp. 120-128, 1997.
    [23] M. Genut, L. Margulis, G. Hodes, and R. Tenne, "Preparation and microstructure WS2 thin films," Thin solid films, vol. 217, pp. 91-97, 1992.
    [24] A. Jäger-Waldau, M. C. Lux-Steiner, G. Jäger-Waldau, and E. Bucher, "WS2 thin films prepared by sulphurization," Appl. Surf. Sci., vol. 70, pp. 731-736, 1993.
    [25] M. Binnewies, R. Glaum, M. Schmidt, and P. Schmidt, "Chemical vapor transport reactions – a historical review," Z. Anorg. Allg. Chem., vol. 639, pp. 219-229, 2013.
    [26] A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, "Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides," Cryst. Growth Des., vol. 13, pp. 4453-4459, 2013.

    [27] B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, "Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study," Nano Lett., vol. 14, pp. 5590-5597, 2014.
    [28] Y. Ma, B. Liu, A. Zhang, L. Chen, M. Fathi, C. Shen, A. N. Abbas, M. Ge, M. Mecklenburg, and C. Zhou, "Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices," ACS Nano, vol. 9, pp. 7383-7391, 2015.
    [29] B. Cho, A. R. Kim, Y. Park, J. Yoon, Y.-J. Lee, S. Lee, T. J. Yoo, C. G. Kang, B. H. Lee, and H. C. Ko, "Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2," ACS Appl. Mat. Interfaces, vol. 7, pp. 2952-2961, 2015.
    [30] W. Zhang, X. Li, T. Jiang, J. Song, Y. Lin, L. Zhu, and X. Xu, "CVD synthesis of Mo(1-x)WxS2 and MoS2(1-x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide," Nanoscale, vol. 7, pp. 13554-13614, 2015.
    [31] X. Liu, Y. Chai, and Z. Liu, "Investigation of chemical vapour deposition MoS2 field effect transistors on SiO2 and ZrO2 substrates," Nanotechnology, vol. 28, pp. 1640041-1640047, 2017.
    [32] Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, and Z. Liu, "Two-step growth of two-dimensional WSe2/MoSe2 heterostructures," Nano Lett., vol. 15, pp. 6135-6176, 2015.
    [33] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., vol. 7, pp. 699-712, 2012.
    [34] S.-M. Sze and K. K. Ng, Physics of semiconductor devices: John wiley & sons, 2006.

    [35] C. Sandroff, R. Nottenburg, J. C. Bischoff, and R. Bhat, "Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation," Appl. Phys. Lett., vol. 51, pp. 33-35, 1987.
    [36] J.-H. Yu, H.-R. Lee, S.-S. Hong, D. Kong, H.-W. Lee, H. Wang, F. Xiong, S. Wang, and Y. Cui, "Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers," Nano Lett., vol. 15, pp. 1031-1036, 2015.
    [37] M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, M.-L. Tsai, C.-W. Chu, K.-H. Wei, and J.-H. He, "Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface," Science, vol. 349, pp. 524-528, 2015.
    [38] Q. Ji, M. Kan, Y. Zhang, Y. Guo, D. Ma, J. Shi, Q. Sun, Q. Chen, Y. Zhang, and Z. Liu, "Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire," Nano Lett., vol. 15, pp. 198-205, 2015.
    [39] L. Chen, B. Liu, M. Ge, Y. Ma, A. N. Abbas, and C. Zhou, "Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode," ACS Nano, vol. 9, pp. 8368-8375, 2015.
    [40] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, "Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2," Nanoscale, vol. 5, pp. 9677-9760, 2013.
    [41] J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, "Large-area synthesis of highly crystalline WSe2 monolayers and device applications," ACS Nano, vol. 8, pp. 923-930, 2013.
    [42] J. Guo, Y. Shi, X. Bai, X. Wang, and T. Ma, "Atomically thin MoSe2/graphene and WSe2/graphene nanosheets for the highly efficient oxygen reduction reaction," J. Mater. Chem. A, vol. 3, pp. 24397-24404, 2015.

    [43] S.-H. Su, W.-T. Hsu, C.-L. Hsu, C.-H. Chen, M.-H. Chiu, Y.-C. Lin, W.-H. Chang, K. Suenaga, H. He Jr, and L.-J. Li, "Controllable synthesis of band-gap-tunable and monolayer transition-metal dichalcogenide alloys," Front. Energy Res., vol. 2, pp. 271-278, 2014.
    [44] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single- and few-layer MoS2," ACS Nano, vol. 4, pp. 2695-2700, 2010.
    [45] S. Luo, X. Qi, L. Ren, G. Hao, Y. Fan, Y. Liu, W. Han, C. Zang, J. Li, and J. Zhong, "Photoresponse properties of large-area MoS2 atomic layer synthesized by vapor phase deposition," J. Appl. Phys, vol. 116, pp. 1643041-1643046, 2014.
    [46] H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, Jr., S. T. Pantelides, and K. I. Bolotin, "Bandgap engineering of strained monolayer and bilayer MoS2," Nano Lett., vol. 13, pp. 3626-3656, 2013.
    [47] C. Ahn, J. Lee, H. U. Kim, H. Bark, M. Jeon, G. H. Ryu, Z. Lee, G. Y. Yeom, K. Kim, J. Jung, Y. Kim, C. Lee, and T. Kim, "Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition," Adv. Mater., vol. 27, pp. 5223-5232, 2015.
    [48] C. C. Huang, F. Al-Saab, Y. Wang, J. Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, "Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature," Nanoscale, vol. 6, pp. 12792-12799, 2014.
    [49] M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, "Charge transport in MoS2/WSe2 van der Waals heterostructure with tunable inversion layer," ACS Nano, vol. 11, pp. 3832-3840, 2017.
    [50] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, "Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors," Phys. Rev. X, vol. 4, pp. 0310051-03100514, 2014.
    [51] H. Li, L. Ye, and J. Xu, "High-performance broadband floating-base bipolar phototransistor based on WSe2/BP/MoS2 heterostructure," ACS Photonics, vol. 4, pp. 823-829, 2017.
    [52] B. Gharekhanlou and S. Khorasani, "Generation and recombination in two-dimensional bipolar transistors," Appl. Phys. A, vol. 115, pp. 737-740, 2014.
    [53] P. Agnihotri, P. Dhakras, and J. U. Lee, "Bipolar junction transistors in two-dimensional WSe2 with large current and photocurrent gains," Nano Lett., vol. 16, pp. 4355-4415, 2016.

    無法下載圖示 全文公開日期 2022/07/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE