簡易檢索 / 詳目顯示

研究生: 張弘民
Hung-min Chang
論文名稱: 二氧化銥一維奈米晶體的成長與特性分析
Growth And Characterization of Iridium Dioxide One-Dimensional Nanocrystals
指導教授: 黃鶯聲
Ying-sheng Huang
口試委員: 孫澄源
Cheng-yuan Sun
蔡大翔
Dah-shyang Tsai
樂錦盛
Chin-sheng Ro
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 83
中文關鍵詞: 奈米管有機金屬化學氣相沉積法氧化銥拉曼奈米柱
外文關鍵詞: Spatial correlation model
相關次數: 點閱:367下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用垂直流冷壁式的有激金屬化學汽相沈積法,我們已成功地在不同基板上成長出二氧化銥一維奈米晶體(包含奈米柱與奈米管)與薄膜。同時也藉由場發射掃瞄式電子顯微術(FESEM)、X光繞射術(XRD)與拉曼散射(Raman Scattering)的量測技術,對各式的二氧化銥樣品之形貌、結構、晶向與組成做詳細的特性分析。透過有系統的研究,我們可以藉由不同的成長速率來準確地控制成長不同型態的二氧化銥一維奈米晶體,包含三角形/楔形奈米柱、未完整奈米管/螺旋奈米管、方形奈米管以及方形奈米柱等。結果顯示相較於這些一維的奈米晶體,包含連續性三維晶粒的薄膜是屬於較穩定的形貌。而根據成長動力學理論,我們已經完成二氧化銥的形貌分佈圖,並且對於這些奈米柱或奈米管的成長機制也進行相關的討論。X光繞射圖譜顯示這些二氧化銥一維奈米晶體與薄膜都具有近乎單晶品質的結構,而且也具有相同[001]長軸方向的訊號。拉曼散射譜線則顯示對於各種二氧化銥奈米晶體皆具有不同的殘留應力。而對於不同基板上所成長的二氧化銥晶體,其拉曼散射的結果也可證實存在於成長介面的晶格不匹配度對於一維奈米結構的成長有很大的影響。此外,我們可以藉由退火處理或是將二氧化銥成長在緩衝層上的方法減少其殘留應力。


    Via the technique of vertical-flow cold-wall metal-organic chemical vapor deposition (MOCVD) using highly volatile (MeCp)(COD)Ir as the CVD precursor, self-assembled one-dimensional (1D) iridium dioxide (IrO2) nanocrystals, including nanorods (NRs) and nanotubes (NTs), as well as thin films have been successfully deposited on various substrates. A detailed characterization focusing on the morphology, structures, orientations, and compositions of the various IrO2 samples have been carried out by means of field-emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), and Raman scattering. From a systematic study, we observed the morphological evolution from triangular/wedged NRs, via incomplete/scrolled NTs to hollow square NTs and solid square NRs by precisely controlling the growth rate of these 1D nanocrystals. The results show that the polycrystalline films composed of continuous 3D grains belong to the most stable form as compared to the these 1D nanocrystals. The morphology diagram based on the growth kinetics is given and the possible mechanism of the formation of nanorods and nanotubes has been discussed. The XRD patterns of these various IrO2 1D nanostructures and thin film show the nearly single-crystalline quality and the same [001] long-axis direction. The micro-Raman spectra show there are different residual stress for these various IrO2 nanocrystal. The Raman results for IrO2 grown on different substrates can also prove the lattice mismatch existing between the interface influence the growth of 1D nanostructures very well. Besides, the residual stress can be reduced by annealing treatment or the IrO2 buffer layer.

    中文摘要----------------------------------------------------------------------------I 英文摘要---------------------------------------------------------------------------II 致謝 ------------------------------------------------------------------------------- IV 目錄 -------------------------------------------------------------------------------- V 圖索引 --------------------------------------------------------------------------- VII 表索引 -------------------------------------------------------------------------- XIII 第一章 緒論--------------------------------------------------------------------- 1 1.1 二氧化銥晶體之結構---------------------------------------------- 1 1.2 二氧化銥晶體導電性----------------------------------------------4 1.3 二氧化銥晶體穩定性及應用-------------------------------------5 1.4 奈米晶體之研究動機----------------------------------------------7 第二章 實驗方法及步驟------------------------------------------------------9 2.1 實驗藥品及規格----------------------------------------------------9 2.2 實驗設備 ----------------------------------------------------------- 11 2.3 實驗步驟及條件 -------------------------------------------------- 13 2.3.1 清洗晶片 --------------------------------------------------- 13 2.3.2 二氧化銥緩衝層之濺鍍 --------------------------------- 13 2.3.3 二氧化銥奈米晶體與薄膜沉積步驟 ------------------ 15 2.3.4 二氧化銥奈米晶體退火步骤 --------------------------- 17 2.4 特性分析之儀器 -------------------------------------------------- 18 第三章 結果與討論 ---------------------------------------------------------- 20 3.1 二氧化銥一維奈米晶體形貌之演化 -------------------------- 20 3.1.1 二氧化銥奈米晶體形貌演化之FESEM圖與其相圖 分析---------------------------------------------------------21 3.1.2 X-ray繞射分析-------------------------------------------34 3.1.3 二氧化銥奈米晶體演化機制的討論------------------36 3.2 利用拉曼散射技術檢測二氧化銥奈米晶體 ----------------- 38 3.2.1 拉曼散射原理 --------------------------------------------- 38 3.2.2 不同形貌的二氧化銥奈米晶體之拉曼散射分析 --- 45 3.2.3 成長於不同基板上之二氧化銥奈米晶體之拉曼散射 分析--------------------------------------------------------- 52 3.2.4 二氧化銥奈米晶體退火處理後之拉曼散射分析 --- 68 第四章 結論 ------------------------------------------------------------------- 76 參考文獻--------------------------------------------------------------------------78 作者簡介--------------------------------------------------------------------------83

    1. JCPDS card no. 43-1019, International Centre for Diffraction Data, Newtown Square, PA, USA.

    2. L. F. Mattheiss, ”Electronic structure of RuO2, OsO2, and IrO2”, Phys. Rev B, Vol.13, No.6, pp.2433-2451 (1976).

    3. 余樹楨, 晶體之結構與性質, 第280頁, 台北, 國立編譯館, 民國七十八年。

    4. W. D. Ryden and A. W. Lawson, ” Electronic transport properties of IrO2 and RuO2”, Phys. Rev. B, Vol.1, No.4, pp.1494-1500 (1970).

    5. M. A. El Khakani, M. Chaker, and E. Gat, ” Pulsed laser deposition of highly conductive iridium oxide thin films”, Appl. Phys. Lett. Vol.69, No.14, pp.2027-2029 (1996).

    6. M. A. El Khakani, M. Chaker, ”Reactive pulsed laser deposition of iridium oxide thin films”, Thin Solid Films, Vol.335, pp.6-12 (1998).

    7. A. M. Serventi, M. A. El Khakani, R. G. Saint-Jacques, D. G. Rickerby,
    ”Highly textured nanostructure of pulsed laser deposited IrO2 thin films as investigated by transmission electron microscopy”, J. Mater. Res., Vol.16, No.8, pp.2336-2342 (2001).

    8. T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, ”Electrical properties of Pb(Zr,Ti)O3 thin film capacitors on Pt and Ir electrodes”, Jpn. J. Appl. Phys., Part 1, Vol.34, pp.5184-5187 (1995).

    9. T. Tamura, K. Matsuura, H. Ashida, K. Kondo, and S. Otani, ”Hysteresis variations of (Pb,La)(Zr,Ti)O3 capacitors baked in a hydrogen atmosphere”, Appl. Phys. Lett. Vol.74, No.22, pp.3395-3397 (1999).

    10. T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, ”Preparation of Pb(Zr,Ti)O3 thin films on electrodes including IrO2”, Appl. Phys. Lett., Vol.65, No.12, pp.1522-1524(1994).

    11. A. Osaka, T. Takatsuna, Y. Miura, ”Iridium oxide films via sol-gel processing”, J. Non-Cryst. Solids, Vol.178, pp.313-319 (1994).
    12. N. Bestaoui, E. Prouzet, P. Deniard, R. Brec, ”Structural and analytical characterization of an iridium oxide thin layer”, Thin Solid Films, Vol.235, pp.35-42 (1993).

    13. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, H. Takenaka,
    ”Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells”, J. Electrochem. Soc., Vol.147, No.6, pp.2018-2022 (2000).

    14. B. R. Chalamala, R. H. Reuss, K. A. Dean, E. Sosa, D. E. Golden,
    ”Field emission characteristics of iridium oxide tips”, J. Appl. Phys., Vol.91, No.9, pp.6141-6146 (2002).

    15. B. R. Chalamala, Y. Wei, R. H. Reuss, S. Aggarwal, S. R. Perusse, B. E. Gnade, R. Ramesh, ”Stability and chemical composition of thermally grown iridium-oxide thin films”, J. Vac. Sci. Technol. B, Vol.18, No.4, pp.1919-1922 (2000).

    16. S. Y. Cha and H. C. Lee, ”Deoxidization of iridium oxide thin film”, Jpn. J. Appl. Phys., Part 2, Vol.10A, No.38, L1128-L1130 (1999).

    17. Y. S. Huang, S. S. Lin, C. R. Huang, M. C. Lee, T. E. Dann, F. Z. Chien, ”Raman spectrum of IrO2”, Solid State Commun. Vol.70, No.5, pp.517-522 (1989).

    18. A. M. Morales, C. M. Lieber, ”A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science, Vol.279, pp.208-211 (1998).

    19. N. Wang, Y. F. Zheng, Y. H. Tang, C. S. Lee, S. T. Lee,
    ”SiO2-enhanced synthesis of Si nanowires by laser ablation”, Appl. Phys. Lett. Vol.73, No.26, pp.3902-3904 (1998).

    20. W. S. Shi, Y. F. Zhang, N. Wang, C. S. Lee, S. T. Lee, ”Oxide-assisted growth and optical characterization of gallium-arsenide nanowires”, Appl. Phys. Lett., Vol.78, pp.3304-3306 (2001).

    21. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, C. M. Lieber, ”Highly polarized photoluminescence and photodetection from single indium phosphide nanowires”, Science, Vol.293, pp.1455-1457 (2001).

    22. H. M. Kim, D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, K. S. Chung, ”Growth of GaN nanorods by a hydride vapor phase epitaxy method”, Adv. Mater., Vol.14, pp.991-993(2002).

    23. C. C. Chen, C. C. Yeh, ”Large-scale catalytic synthesis of crystalline Gallium Nitride nanowires”, Adv. Mater., Vol.12, pp.738-741 (2000).

    24. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, ”Room-temperature ultraviolet nanowire nanolasers”, Science, Vol.292, pp.1897- 1899 (2001).

    25. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, ”Catalytic growth of Zinc Oxide nanowires by vapor transport”, Adv. Mater., Vol.13, pp.113-116 (2001).

    26. J. J. Wu, S. C. Liu, ”Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition”, Adv. Mater. Vol.14, pp.215-218 (2002).

    27. P. Yang, C. M. Lieber, ”Nanorod-superconductor composites: A pathway to materials with high critical current densities”, Science, Vol.273, pp.1836-1840 (1996).

    28. Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, H. Terrones, ”SiC-SiOx heterojunctions in nanowires”, J. Mater. Chem., Vol.9, pp.3173-3178 (1999).

    29. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng, ”Nano-scale GeO2 wires synthesized by physical evaporation”, Chem. Phys. Lett., Vol.303, pp.311-314 (1999).

    30. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, J. M. Kim, ”Catalytic growth of β-Ga2O3 nanowires by Arc discharge”, Adv. Mater., Vol.12, pp.746-750 (2000).

    31. B. R. Chalamala, Y. Wei, R. H. Reuss, S. Aggarwal, B. E. Gnade, R. Ramesh, J. M. Bernhard, E. D. Sosa, D. E.Golden, ”Effect of growth conditions on surface morphology and photoelectric work function characteristics of iridium oxide thin films”, Appl. Phys. Lett., Vol.74, pp.1394-1396 (1999).

    32. R. S. Chen, Y. S. Chen, Y. S. Huang, Y. L. Chen, Y. Chi, C. S. Liu, K. K. Tiong, A. J. Carty, ”Growth of IrO2 films and nanorods by means of CVD: An example of compositional and morphological control of nanostructures”, Chem. Vap. Deposition, Vol.9, pp.301-305 (2003).

    33. JCPDS card no. 29-0836, International Centre for Diffraction Data, Newtown Square, PA, USA.

    34. JCPDS card no. 10-0173, International Centre for Diffraction Data, Newtown Square, PA, USA.

    35. JCPDS card no. 20-0631, International Centre for Diffraction Data, Newtown Square, PA, USA.

    36. R. S. Chen, Y. S. Huang, Y. M. Liang, D. S. Tsai, Y. Chi, J. J. Kai,
    ”Growth control and characterization of vertically aligned IrO2 nanorods”, J. Mater. Chem., Vol.13, pp.2525-2529 (2003).

    37. R. S. Chen, Y. S. Huang, Y. M. Liang, C. S. Hsieh, D. S. Tsai, K. K. Tiong, ”Field emission from vertically aligned conductive IrO2 nanorods”, Appl. Phys. Lett., Vol.84, No.9, pp.1552-1554 (2004).

    38. R. S. Chen, H. M. Chang, Y. S. Huang, D. S. Tsai, S. Chattopadhyay, K. H. Chen, ”Growth and characterization of vertically aligned self-assembled IrO2 nanotubes on oxide substrates”, J. Cryst. Growth, Vol.271, pp.105-112 (2004).

    39. B. Mayers and Y. Xia, ”Formation of Tellurium nanotubes through concentration depletion at the surfaces of seeds”, Adv. Mater., Vol.14, No.4, pp.279-282 (2002).

    40. Y. Liu, J. Dong, M. Liu, ”Well-aligned nano-box-beams of SnO2”, Adv. Mater., Vol.16, No.4, pp.353-356 (2004).

    41. R. S. Chen, Y. S. Huang, D. S. Tsai, S. Chattopadhyay, C. T. Wu, Z. H. Lan, K. H. Chen, ”Growth of well aligned IrO2 nanotubes on LiTaO3(012) substrate”, Chem. Mater., Vol.16, pp.2457-2462 (2004).

    42. JCPDS Card No. 15-870, International Centre for Diffraction Data, Newtown Square, PA, USA.

    43. R. F. Xiao, J. I. D. Alexander, F. Rosenberger, ”Morphological evolution of growing crystals: A Monte Carlo simulation”, Phys. Rev. A, Vol.38, No.5, pp.2447-2456 (1988).
    44. 廖培成, “反應式濺鍍法製備二氧化銥薄膜的特性研究”, 國立台
    灣科技大學電子工程技術研究所博士論文, (1996).

    45. 陳義信, “冷壁式有機金屬化學氣相沉積法製備二氧化銥薄膜及
    其特性分析”, 國立台灣科技大學材料科技學程碩士論文, (2001).

    46. 陳炳州, “以拉曼光譜研究由磁控濺鍍合併電子迴旋共振系統所
    成長的類鑽石薄膜”, 國立成功大學物理研究所碩士論文,
    pp.28-39 (2002).

    47. Y. S. Huang, P. C. Liao, C. S. Chen, W. S. Ho, K. K. Tiong,
    ”Characterization of IrO2 thin films by Raman spectroscopy”, Thin
    Solid Films, Vol.301, pp.7-11 (1997).

    48. I. H. Campbell and P. M. Fauchet, ”The effects of microcrystal size and shape on the phonon raman spectra of crystalline semiconductors”, Solid State Commun., Vol.58, No.10, pp.739-741 (1986).

    49. C. Kittel, Introduction to Solid State Physics, 7th edn., John Wiley & Sons Inc., New York, p.106 (1996).

    50. J. V. Ryan, A. D. Berry, M. L. Anderson, J. W. Long, R. M. Stroud, V. M. Cepak, V. M. Browning, D. R. Rolison, C. I. Merzbacher,
    ”Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2”, Nature, Vol.406. pp.169-172 (2000).

    51. R. S. Chen, C. C. Chen, Y. S. Huang, C. T. Chia, H. P. Chen, D. S. Tsai, K. K. Tiong, ”A comparative study of microstructure of RuO2 nanorods via Raman scattering and field emission scanning electron microscopy”, Solid State Commun. Vol.131, pp.349-353 (2004).

    QR CODE