簡易檢索 / 詳目顯示

研究生: 洪信凱
Hsin-Kai Hung
論文名稱: 去回放大式之寬頻譜混成光纖放大器之研製
Investigation of Broadband Double-pass Hybrid Fiber Amplifiers
指導教授: 廖顯奎
Shien-kuei Liaw
口試委員: 黃振發
Jen-Fa Huang
單秋成
Chow-Shing Shin
李澄鈴
Cheng-Ling Lee
林淑娟
Shu-Chuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 84
中文關鍵詞: 摻鉺光纖放大器拉曼光纖放大器去回放大式架構布拉格光纖光柵泵激功率分配
外文關鍵詞: EDFA, RFA, double-pass, FBG, pump sharing
相關次數: 點閱:256下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分三個部份討論:第一部份為模擬單向傳輸去回放大式之寬頻譜混成摻鉺光纖放大器/拉曼光纖放大器之研製,利用單一波長之泵激雷射光源與泵激分配機制達到寬頻譜放大,同時利用高反射率泵激反射元件達到殘餘功率再利用;再者,透過一個光循環器與分波多功元件將C頻帶與L頻帶光信號分離,由不同路徑進入混成光纖放大器,並由不同波長的光纖光柵反射,形成去回放大式架構,增益等化後可獲得20±0.5 dB的增益,平均雜訊指數為6.5 dB,並且於10 Gb/s × 14 頻道,且傳輸100公里的系統中,利用由光纖光柵與不同長度的色散補償光纖交錯而成的色散補償模組達到精確的色散補償。
    第二部份為模擬雙向傳輸去回放大式混成摻鉺光纖放大器/拉曼光纖放大器之研製,設計理念與第三章架構相似,不同之處如下:(1)應用於雙向傳輸系統;(2)調整泵激雷射波長拓展增益頻寬;(3)簡化泵激分配機制;而本章設計之混成光纖放大器於增益等化後C頻帶與L頻帶分別獲得20±0.5 dB與16.5±0.5 dB的增益,平均雜訊指數分別為5.1 dB與7.8 dB;並且量測應用於10 Gb/s×25頻道,傳輸50公里的系統中之Q值,其平均Q值由2.9提昇至6.4。
    第三部份為實作之研究,討論去回放大式混成光纖放大器所面臨的受激布里淵散射問題;並於實驗中透過不同泵激架構與調整光纖光柵反射率提高受激布里淵散射之臨界泵激功率值,C頻帶波長1552 nm的測試光信號可承受泵激功率(總功率)由266 mW提高為303 mW,而L頻帶波長為1581 nm的測試光信號可承受泵激功率則由237 mW提昇為260 mW。


    This thesis is divided into three parts: in the first part we simulate unidirectional, broadband (signals) double-pass hybrid EDFA/RFA amplifiers (HFAs). Initially, we use the single-wavelength pump laser diode and pump-sharing mechanism to design the broadband HFAs, and also utilize the high-reflectivity pump reflector to reuse the residual pump power. When signals launch into HFAs, we can separate the C-band channels and L-band channels by using an optical circulator and a C/L WDM coupler. Signals double-pass scheme would be realized by using FBGs locate in the midway of dispersion compensation fiber (DCF). For gain equalization issue, we adjust the reflectivity of FBGs with specific wavelengths to obtain an average gain of 20±0.5 dB. At the same time, the average noise figure is 6.5 dB. In order to achieve a precisely dispersion compensation in a 100 km access network, we put dispersion compensation module (DCM) with several FBGs with various reflectivity and be written at different locations of along the DCF. The second part is to simulate the bidirectional, broadband (signals) double-pass HFAs. Comparing with the unidirectional HFAs, there different concepts are: (1) The bidirectional HFAs may apply in bidirectional transmission system; (2) One may extend the gain-bandwidth to longer region of the L band if an 1495 nm pump laser diode is used; (3) Pump sharing mechanism is simplified. For the gain equalization issue, the average gain of 20±0.5 dB at the C-band and 16.5±0.5 dB at the L-band are obtained. The average noise figures are 5.1- and 7.8 dB for the C and L bands, respectively. We also measure 10Gb/s x 25 WDM channels in 50 km transmission using the HFAs. The average Q value is improved from to 6.4 from 2.9.The third part is experimental study the possible simulated Brillouin scattering (SBS) induces impact to double-pass HFAs. SBS threshold could be increased after designed appropriate pump structures and adjust the reflectivity of FBGs. Therefore, the total lunch pump power may increase for C-band channel at 1552 nm and for L-band channel at 1582 nm simultaneously by avoiding the SBS impact.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VII 表索引 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 光纖放大器介紹 4 2.1 摻鉺光纖放大器 4 2.1.1 C-band 摻鉺光纖放大器原理 4 2.1.2 參數描述 6 2.2 L-band 拉曼光纖放大器 8 2.2.1 拉曼光纖放大器原理 9 2.2.2 參數描述 10 2.3 C+L band雙波帶光纖放大器 16 2.3.1 C+L band 摻鉺光纖放大器 16 2.3.2 C+L band 拉曼光纖放大器 17 2.3.3 C+L band 混合式拉曼光纖放大器 18 2.4 OptiSystem 6.0 軟體介紹 19 2.3.1 摻鉺光纖放大器模擬設計 19 2.3.2 拉曼光纖放大器模擬設計 20 2.3.3 色散管理模擬範例 22 第三章 單向傳輸去回放大式之寬頻譜混成光纖放大器 24 3.1 串聯式架構分析與討論 24 3.1.1 架構a:EDFA-RFA-光纖光柵陣列排序型 25 3.1.2 架構b:RFA-EDFA-光纖光柵陣列排序型 26 3.1.3 架構c:C-band 與L-band 光纖光柵陣列分隔型 27 3.1.4 分析與討論 28 3.2 拉曼光纖放大器殘餘色散 31 3.3 單向傳輸去回放大式之寬頻譜混成光纖放大器 33 3.4 結果與討論 38 第四章 雙向傳輸去回放大式之寬頻譜混成光纖放大器 39 4.1 雙向傳輸架構討論 39 4.1.1 單向多波道 39 4.1.2 雙向頻道交錯傳輸架構 40 4.1.1 混合型 41 4.2 雙向傳輸去回放大式之寬頻譜混成光纖放大器 41 4.3 結果與討論 47 第五章 去回放大式架構限制與優化 49 5.1 去回放大式架構限制之理論分析 49 5.1.1 去回放大式架構之多路徑干擾 49 5.1.2 受激布里淵散射 50 5.2 串聯型去回放大式混成光纖放大器量測 52 5.2.1 架構a:EDFA-RFA-光纖光柵陣列排序型 52 5.1.2 架構b:RFA-EDFA-光纖光柵陣列排序型 59 5.3 結果與討論 61 第六章 結論與未來展望 57 6.1 結論 62 6.2 未來展望 63 6.2.1 去回放大式之混成光纖放大器模擬架構研究 52 6.1.2 去回放大式之混成光纖放大器實作架構研究 59 參考文獻 61

    [1] S.-J. Park, G.-Y. Kim and T.-S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol., vol. 12, pp. 162-169, 2006
    [2] H. Kim, H. C. Ji and C. H. Kim, “Effects of intraband crosstalk on incoherent light using SOA-based noise suppression technique,” IEEE Photon. Technol. Lett., vol. 18, pp. 1542-1544, 2006.
    [3] K. Y. Cho, Y. Takushima and Y. C. Chung, “10-Gb/s operation of RSOA for WDM-PON,” IEEE Photon. Technol. Lett., vol. 20, pp. 1533-1535, 2008.
    [4] P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett., vol. 37, pp. 1181-1182, 2001.
    [5] J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol., vol. 22, pp. 79-93, 2004.
    [6] Y. Aoki, “Properties of fiber Raman amplifiers and their applicability to digital optical communication system,” J. Lightwave Technol., vol. 6, pp. 1225-1239, 1998.
    [7] S. Namiki, “Recent advance in Raman Amplifiers,” ECOC’01 Tutorial, October, Amsterdam, pp. 162-181, 2001.
    [8] S.-K. Liaw, C.-K. Huang and Y.-L. Hsiao, “Parallel-type C+L band hybrid amplifier pumped by 1480 nm laser diodes,” Laser Phys. Lett., vol. 5, pp. 543-546, 2008
    [9] S.-K. Liaw and Y.-S. Huang, “C+L-band hybrid amplifier using FBGs for dispersion-compensation and power equalisation,” Electron. Lett., vol. 44, pp. 844-845, 2008
    [10] S.-K. Liaw, L. Dou and A. Xu, “Fiber-Bragg-grating-based dispersion- compensated and gain-flattened Raman fiber amplifier,” Opt. Express, vol. 15, pp. 12356-12361, 2007.
    [11] 廖協虹, “C+L band 摻鉺光纖放大器的研製及應用 ,” 國立台灣科技大學碩士論文, 2004
    [12] 陳威廷, “寬頻摻鉺光纖放大器之優化研製 ,” 國立台灣科技大學碩士論文, 2007
    [13] 黃鈺勝, “具多優點之混合型光纖放大器研究 ,” 國立台灣科技大學碩士論文, 2009
    [14] P. C. Becker, N. A. Olsson and J. R. Simpson, “Erbium-Doped Fiber Amplifiers, Fundamentals and Technology,” Academic Press, pressed in New York, USA, 1999.
    [15] J. F. Michel, “Rare-earth-doped fiber lasers and amplifier,” Marcel Dekker, New York, USA, 2001.
    [16] G. P. Agrawal, “Nonlinear Fiber Optics,” Academic Press, New York, USA, 2001.
    [17] S. H. Wang and C. C. Fan, “Distributed fiber Raman amplifiers: analytical expression of noise characteristics under complex conditions,” Opt. Commun., vol. 198, pp. 65-70, 2011.
    [18] A. H. Beshr, M. H. Aly, “Raman gain and Raman gain Coefficient for SiO2, GeO2, B2O3 and P2O5 Glasses,” Radio Science Conference, 2007.
    [19] M. N. Islam (Ed.), “Raman amplifiers for telecommunications 1: physical principles Islam,” Springer, New York, USA, 2003.
    [20] S. Jiang, B. Bristiel, Y. Jaouen, P. Gallion, E. Pincemin and S. Capouilliet, “Full characterization of modern transmission fibers for Raman amplified-based communication systems,” Opt. Express, vol. 15, pp. 4883-4892, 2007.
    [21] 蕭淵隆, “高效益光纖放大器之研製,” 國立台灣科技大學論文, 2006.
    [22] M. Li, L. Dou, A. Xu, C.-K. Huang, Y.-G. Lai and S.-K. Liaw, “Performance enhancement of C+L band EDFA by recycling the residual pump laser,” Microwave Opt. Techn. Lett., vol. 48, pp. 1953-1955, 2006.
    [23] C. C. Chen and J. C. Dung, “Broadband Raman amplifier with nonzero dispersion shifted fiber using 6-wavelengths pumping laser,” Conference of Optics and Photonics Taiwan, Dec. 18-19, 2004.
    [24] X. Zhou, C. Lu, P. Shum and T. H. Cheng, “A simplified model and optimal design of a multi-wavelength backward-pumped Raman amplifier,” IEEE Photon. Technol. Lett., vol. 13, pp. 945-947, 2001.
    [25] S. Namiki and Y. Emori, “100 nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes”, Optical Fiber Communication Conference, vol. 39, pp. 1444-1451, Atlanta, Georgia, USA. March 2003.
    [26] M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, “Analysis of a multiple-pump Raman amplifier,” Appl. Phys. Lett., vol. 78, pp. 1322, 2001.
    [27] H. Kidorf, K. Rottwitt, M. Nissov and M. Ma, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett., vol. 12, pp. 1486, 2000.
    [28] J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, H.Y. Chung and S. B. Lee, “Performance Comparison of Various Configurations of Single-Pump Dispersion-Compensating Raman/EDFA Hybrid Amplifiers,” IEEE Photon. Technol. Lett., vol. 17, 765-767, 2005.
    [29] J. H. Lee, Y. M. Chang, Y. G. Han, S. H. Kim, H. Y. Chung, and S. B. Lee, “Dispersion-compensating Raman/EDFA hybrid amplifier recycling residual Raman pump for efficiency enhancement,” IEEE Photon. Technol. Lett., vol. 17, 43-45, 2005.
    [30] J. D. Ania-Castañón, I. O. Nasieva, S. K. Turitsyn, N. Brochier and E. Pincemin, “Optimal span length in high-speed transmission systems with hybrid Raman-erbium-doped fiber amplification,” Opt. Lett., vol. 30, pp. 23-25, 2005.
    [31] H. Masuda, S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multi-wavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett., vol. 11, pp. 647-649, 2002.
    [32] 黃政凱, “前瞻型光纖放大器之研製,” 國立台灣科技大學碩士論文, 2005
    [33] 林大維, “拉曼光纖放大器特性改良之研究,” 國立台灣科技大學碩士論文, 2007
    [34] J. C. Dung, S. Chi, and S. Wen, “Gain flattened of an erbium doped fiber amplifier by using fiber Bragg gratings,” Electon. Lett., vol. 34, pp. 555-556, 1998.
    [35] M. I. Md Ali, A. K. Zamzuri, A. Ahmad, R. Mohamad and M. A. Mahdi, “Experimental validation of double-pass discrete Raman amplifier limitation for large signals,” IEEE Photon. Technol. Lett., vol. 18, pp. 493-495, 2006.
    [36] M. D. Pelusi, A. Fu, and B. J. Eggleton, “Multi-channel in-band OSNR monitoring using stimulated Brillouin scattering,” Opt. Express, vol. 18, pp. 9435-9446, 2010
    [37] Y.-G. Liu and D.-N. Wang, “Wavelength tunable and amplitude-equilibrium dual-wavelength lasing sources with dual-pass Raman/Brillouin amplification configuration,” Opt. Express, vol. 16, pp. 3583-3588, 2008.
    [38] W. Chen, K. Wang and Z. Meng, “Stimulated Brillouin scattering effect on gain saturatin of distributed fiber Raman amplifier,” Chinese Opt. Lett., vol. 8, pp. 365-367, 2010.
    [39] M. T. M. Rocco Giraldi, A. M. Rocha, B. Neto, C. Correia, M. E. V. Segatto, M. J. Pontes, A. P. L. Barbero, J. C. W. Costa, M. A. G. Martinez, O. Frazão, J. M. Baptista, H. M. Salgado, M. B. Marques, A. L. J. Teixeira, P. S. André, “Rayleigh assisted Brillouin effects in distributed Raman amplifiers under saturated conditions at 40 Gb/s,” Microwave Opt. Technol. Lett., vol. 52, pp. 1331-1335, 2010
    [40] S.-K. Liaw, L. Dou, A. Xu, Y.-S. Huang, “Optimally gain-flattened and dispersion-managed C+L-band hybrid amplifier using a single-wavelength pump laser,” Opt. Commun., vol. 282, pp. 4087-4090, 2009.
    [41] Optiwave, “OptiSystem Tutorials-Volume 1,” Optiwave, Canada/US, 2007.

    QR CODE