簡易檢索 / 詳目顯示

研究生: 黃莘為
Hsin-Wei Huang
論文名稱: 長波段光纖放大器與光纖雷射的研製與感測應用
Investigation and Sensing Application of L-band EDFA and Fiber Laser
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 葉秉慧
Ping-hui S. Yeh
邱裕中
Yu-Zung Chiou
游易霖
Yi-Lin Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: L band 光放大器L band 環型雷射光纖感測光纖光柵
外文關鍵詞: L-band EDFA, L-band EDFL, Fiber sensing, Fiber Bragg Grating
相關次數: 點閱:237下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究L band環型光纖雷射之感測系統,感測參數主要為溫度、應力應變以及震動,藉由光纖光柵受到外在環境影響所產生的波長飄移特性作為系統之感測元件。首先介紹研究動機並探討過去的文獻,其次介紹光纖感測相關技術與論述布拉格光纖光柵、長週期光纖光柵以及使用之碳纖維複合材料的原理與特性,並簡介光纖被動元件之特性。接下來將研製雙級L band摻鉺光纖放大器,在第一級利用3m的摻鉺光纖,第二級利用4m的摻鉺纖且兩級的泵激光功率皆為150mW時,得到3.16dBm的輸出功率,接著利用此摻鉺光纖放大器建置L band環型摻鉺光纖雷射,其動態量測範圍可達30公里,並以此環型摻鉺光纖雷射結合光纖光柵組成水溫、應力應變與震動三種感測系統,模擬距離6公里時其感測情形,溫度感測範圍25°C -50°C,波長總飄移量為0.98nm,線性度R2約為0.9997;應力應變感測將可移動平台移動0.1mm,光纖光柵受拉力之波長總飄移量為1.6nm,受壓力之總波長飄移量為1.6nm;震動感測時,當使用40g法碼且震動的角度變化量為15°-45°時,波長變化42pm至250pm。
    其次利用半導體光放大器為光源,建置雷射輸出波長位在L band的環型半導體光放大器光纖雷射,其動態量測範圍達到10公里時,因損耗過大而無法產生雷射。接著以環型摻鉺光纖雷射的光纖光柵作為感測端進行水溫、應力應變的感測實驗,溫度感測範圍25°C -50°C,波長總飄移量為0.96nm,線性度R2約為0.9997;應力應變感測將可移動平台移動0.1mm,光纖光柵受拉伸力之波長總飄移量為1.6nm,受擠壓力之總波長飄移量為1.5nm。


    In this thesis, we propose L-band EDFA and fiber lasers for fiber-optic sensing. The fiber lasers include erbium-doped fiber laser (EDFL) and the fiber ring laser using a semi-conductor optical amplifier .The important parameters such as temperature, tension/squeeze and earthquake vibration were measured and analyzed by using light source. In the beginning, we introduce the development of fiber-optic sensing technologies, the mechanism of Fiber Bragg Gratings (FBG), and theories of both erbium-doped fiber amplifier (EDFA) and EDFL. We structure the two-stage L-band EDFA, and we found that the result of (3m+4m) EDFs is in the output power of 3.16 dBm.
    Secondly, the dynamic range is more than 30 km when the EDFL is sued as sensing light source for temperature, strain and earthquake vibration. The temperature we measured ranging from 25℃ to 50℃ is corresponding to the wavelength shift of 0.98nm and the linearly R2 is 0.9997. The sensitivities for strain and stress are 0.16nm/0.01mm and 0.16nm/0.01mm, respectively. The wavelength drift is 42 pm to 250 pm by using the 40g weight when the earthquake vibration angle ranges from 15°to 45°for a simple pendulum.
    The measurement of dynamic range is more than 6 km when a semiconductor optical amplifier based on fiber laser is sued as sensing light source. The temperature we measured ranging from 25℃to 50℃ is corresponding to the wavelength shift of 0.96nm and the linearly R2 is 0.9997. The sensitivities for tension and squeeze are 0.16nm/0.01mm and 0.15nm/0.01mm, respectively.

    摘要 I Abstract II 致謝.. III 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻探討 3 1-4 論文架構 6 第二章 光纖光柵感測原理與光被動元件 7 2-1 光纖光柵簡介與原理 7 2-1-1布拉格光纖光柵 8 2-1-2 長週期光纖光柵 11 2-2 感測用光纖光柵製作 12 2-2-1 布拉格光纖光柵 14 2-2-2 長週期光纖光柵 17 2-3 光纖光柵之溫度補償與熱退火 17 2-3-1 碳纖維複合材料之溫度補償 17 2-3-2 光纖光柵之熱退火機制 18 2-4光纖光柵之重要參數感測理論 18 2-5 光被動元件介紹 21 第三章 L-band摻鉺光纖放大器之特性量測 25 3-1摻鉺光纖放大器理論分析 25 3-2 L-band摻鉺光纖放大器之介紹 28 3-2-1 L-band摻鉺光纖放大器之原理 28 3-2-2 摻鉺光纖放大器之參數介紹 28 3-3 L-band摻鉺光纖放大器之設計 33 3-3-1 單級L band摻鉺光纖放大器 33 3-3-2 雙級L band摻鉺光纖放大器…………………………………..…33 3-4 L-band摻鉺光纖放大器之特性量測 37 3-4-1 摻鉺光纖放大器之增益平坦機制 37 3-4-2 摻鉺光纖放大器之增益特性分析………………………………..37 3-4-3 摻鉺光纖放大器之光訊雜比與雜訊指數 44 第四章 L band環型摻鉺光纖雷射為光源之感測系統 48 4-1摻鉺光纖雷射之原理及架構 48 4-2 L band環型摻鉺光纖雷射 51 4-2-1環型摻鉺光纖雷射 51 4-2-2雷射光源長時間穩定性分析 53 4-2-3不同共振腔長度之環型摻鉺光纖雷射 55 4-3水溫感測系統 58 4-4軸向應力感測系統 63 4-5震動感測系統 69 第五章 L band環型半導體光放大器光纖雷射為光源之感測系統 75 5-1半導體光放大器 75 5-1-1半導體光放大器之簡介 75 5-1-2半導體光放大器工作原理 76 5-1-3 半導體光放大器之參數特性 78 5-2 L band環型半導體光放大器光纖雷射 81 5-2-1環型半導體光放大器光纖雷射 81 5-2-2雷射光源長時間穩定性分析 83 5-2-3不同共振腔長度之環形半導體光放大器光纖雷射 84 5-3以環型半導體光放大器光纖雷射為光源之感測系統 87 5-3-1水溫感測系統 87 5-3-2軸向應力感測系統 89 第六章結論與未來展望 93 6-1 結論 93 6-2 未來展望 95 著作 98 參考文獻 99

    [1] 安毓英、曾小東,“光纖感測與量測”,台北,五南圖書出版股份有限公司,初版,2004。
    [2] 王順民,“光纖光柵多工應變感測系統之製作與研究”,國立清華大學電機工程研究所碩士論文,2004。
    [3] A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Structural Control and Health Monitoring, vol. 12, pp. 269-282, 2005.
    [4] L. Li, M. Li, W. Shi, H. Lu, X. Wen, X. Chang and Y. Zeng, “A New Fiber Bragg Grating Interrogation and Multiplexing Schema Using an F-P Laser Light Source,” IEEE Photonics Technology Letter, vol. 29, pp.2
    [5] C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazão, “Fabry–Pérot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sensors Journal, vol. 12, no. 1, pp. 17-21, 2012.
    [6] W. H. Chung, S. Y. Liu, B. O. Guan, T. L. Chan, T. H. T. Chan and H. Y. Tam, “Structural. Monitoring of Tsing Ma Bridge using Fiber Bragg Grating Sensors,” IEEE Proceedings of the Sixth Chinese Optoelectronics Symposium, 2003.
    [7] 高雪松,”光纖光柵在光通信領域中的應用”,2005。
    [8] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Journal of Quantum Electronics, vol. 9, pp. 919-933, 1973.
    [9] 畢衛紅,張闖,“光纖Bragg光柵的反射特性研究”,中國科技論文在線,第22期,第8卷,2003。
    [10] K. O. Hill and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA Journal of Lightwave Technology, vol. 15, pp. 1263-1276, 1997.
    [11] 李雅萍,“Fabry-Perot etalon 所組成之光強增益平坦器之研究”,中央大學光電科學研究所碩士論文,2001。
    [12] Erdogan, T., “Fiber grating spectra,” IEEE/OSA Journal of Lightwave Technology ,”vol. 15, no. 8, pp. 1277-1294, 1997.
    [13] K.O. Hill, Y.Fujii, D.C Johnsen, and B.S Kawasaki, ” Photosensitivity in optical fiber_waveguides: Application_to_reflection_filter_fabrication,” Appl.Phys.Lett. Vol.32, pp.647-649, 1978.
    [14] Chee-Kiong Soh, Chee-Kiong, Yang, Yaowen, and SureshBhalla, “Smart Materials in Structural Health monitoring control and biomechanics,” Springer (Germany) and Zhejiang University Press (China), 2012, pp.414-420.
    [15] G. Meltz, W.W. Morey, and W.H. Glenn, “Formation of Bragg grating in optical fibers by transverse holographic method,” Optics Letters, vol.14, no.15, pp.823-825, 1989.
    [16] 陳宣臣, “波長可調光纖光柵之研製與應用” ,台灣科技大學電子工程研究所碩士論文,2004。
    [17] K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett., vol.62, no.10, pp. 1035-1037, 1993.
    [18] 劉學政,“光纖光柵研製及其於光網路模組之應用”,台灣科技大學電子工程研究所碩士論文,2002。
    [19] 張銘宏,“兼具增益之可重構光信號塞取多工器”,台灣科技大學電子工程研究所碩士論文,2005。
    [20] 陳佩嫈,“以光纖光柵感測器監測碳纖維複材經衝擊/疲勞破壞/貼片修補之缺陷發展”,台灣大學機械工程研究所碩士論文,2012。
    [21] 蕭文皓,“交通安全感測網路之光開關設計及參數量測”,台灣科技大學電子工程研究所碩士論文,2015。
    [22] 葉天傑,“外力式長週期與傳統式短週期光纖光柵的特性分析及實驗量測”,台灣大學機械工程研究所碩士論文,2002。
    [23] J. F. Nye, “Physical properties of crystal : their presentation by tensors and matrices”, Oxford University Press,1957.
    [24] F. Yu and S. Yin, “Fiber optic sensors,” New York, Marcel Dekker, 2002.
    [25] L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, “Temperature-independent FBG pressure sensor with high sensitivity,” Optical Fiber Technology, vol. 3, pp. 78-80, 2007.
    [26] 彭昶銘,“三級高功率鉺鐿共摻光纖放大器研製與應用”,台灣科技大學電子工程研究所碩士論文,2015。
    [27] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol.3, pp. 991-1007, 1997.
    [28] L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Optics Letters, vol. 37, no. 7, pp. 1148-1150, April, 2012.
    [29] 廖協虹, “C+L-Band 摻鉺光纖放大器的研製與應用”,國立台灣科技大學電子工程研究所碩士論文,2004。
    [30] 廖顯奎,“當代光電工程”,初版,台中,滄海書局, 204–207頁,2006
    [31] W. Imajuku, A. Takada and Y. Yamabayashi, “Inline Coherent Optical Amplifier with Noise Figure Lower than 3dB Quantum Limit”, Electron. Lett., vo;.36,pp. 63-64, 2000.
    [32] J. F. Michael, “Rare-Earth-Doped Fiber Lasers and Amplifier”, Marcel Dekker, 2001.
    [33] R.D.Muro, S.J.Wilson, N.E.Jolly, B.S.Farley, A.Robinson, and J.Miun,“Measurement of the Quantum Efficiency of Long Wavelength EDFAs with and without an Idler Signal”, Optical Fiber Communications Conference, Madrid, Spain, vol. 1,pp. 419-420 1999.
    [34] 柯俊豪,“以長週期光纖光柵實現光放大器之增益平坦濾波器”,國立中山大學通訊工程研究所碩士論文,2004。
    [35] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers: fundamentals and technology”, San Diego, USA: Academic Press, 1999.
    [36] 黃幸文,“光纖感測光源研製及其重要參數之量測”,國立台灣科技大學電子工程研究所碩士論文,2013。
    [37] 葉東昆,“1.55μm寬頻半導體光放大器研製與分析”,國立中山大學電子工程研究所碩士論文,2004。
    [38] G. Eisenstein and L. W. Stulz, “Antireflection Coating on Semicondictor Laser Facets using Sputtered Lead Silicate Glass”, Journal of Lightwave Technology, vol. LT-4, no.9,pp. 1373-1375,1986.
    [39] M. J. Connelly, “Semiconductor optical amplifiers,” Kluwer Academic Publishers, 2002.
    [40] M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” Journal of Lightwave Technology, vol. 6, no. 4, pp. 531-544, 1998.
    [41] Y. Yamamoto, “Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers,” IEEE Journal of Quantum Electronics, vol. 16, no. 10, pp. 1047-1052, 1980.
    [42] D. K. Mynbaev and L. L. Scheiner, “Fibre Optic Communications Technology,” Prentice-Hall, 2000.
    [43] M. L. Filograno, P. C. Guillén, A. Rodríguez-Barrios, S. Martín-López, M. Rodríguez-Plaza, Á. Andrés-Alguacil, and M. González-Herráez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sensors Journal, vol. 12, no. 1, 2012.
    [44] Y. Yamamoto, “Coherence Amplification and Quantum Effect in Semiconductor Lasers,” Wiley, 1991.

    QR CODE