簡易檢索 / 詳目顯示

研究生: 徐榕辰
Rong-chen Hsu
論文名稱: 光纖感測器於微應變之研究與應用
Fiber Strain Sensor Study and Research
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 李三良
San-Liang Lee
李志堅
Chih-Chien Lee
劉政光
Cheng-Kuang Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 58
中文關鍵詞: 光纖感測器馬赫詹德干涉儀光纖應變感測器
外文關鍵詞: fiber senosr, MZI, fiber strain sensor
相關次數: 點閱:235下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們將探討微應變量測的研究與應用。不同應變量變化將被使用來改變單模光纖的相位,並於光學低同調干涉(OLCI)系統測量對應相位的應變效應,其中包含中心波長1550奈米的超螢光發光二極體(SLED),馬赫詹德(Mach-Zehnder)干涉儀產生之干涉圖形(Interferogram),也稱為傅立葉光學。我們同時在干涉儀中,外加中心波長1310奈米波長雷射的光源,其干涉圖之間距形成絕對光學尺的刻度,以減少電動平移台移動誤差,其後光源再接至分波多工耦合器(WDM Coupler),將兩個不同波長之光源分開取出其干涉圖形,如此不僅可監測微應變量,更可達到650奈米的解析度。以本實驗室之馬赫詹德干涉儀作為量測時,對於應變的測量可達到 ,而我們將馬赫詹德干涉儀改良為串聯式馬赫詹德干涉儀,其優點為感測靈敏度提高一倍且減少由光耦合器造成的差入損耗,對於應變的測量可提升至 之靈敏度。
    其次為使用傳統的布拉格光纖光柵(FBG)測量應變,藉由外加在光柵之應變造成的應力效應,測量其布拉格波長的偏移量,布拉格中心波長對應變的實驗結果量測可達 之靈敏度。
    另外我們亦將布拉格光纖光柵與馬赫詹德干涉儀互相結合,將感測路徑加入光柵,利用SMF-28光纖測量長範圍數微米之應變,光纖光柵測量小範圍數奈米之微應變,並利用光纖光柵反射波取代外接之可調變波長雷射作為光學尺的光源,且光纖光柵之反射波無須使用分波多工耦合器進行分波,如此一來便可達成長範圍之應變與小範圍之應變同步監測的系統。


    In this thesis, we investigated, designed and analyzed the fiber sensing systems for microstrain applications. A super-luminescent diode (SLED), which had a maximum output at 1550-nm wavelength, involved with a 1.3-m wavelength distributed feedback laser as the optical ruler and propagated through optical low coherence interferometer (OLCI), where the fiber was installed in one of two arms followed by a scheme of the wavelength division multiplexer (WDM) couplers, photo-detection, and electric noise filtering. A Mach-Zehnder interferometer (MZI) built with the SMF-28 fiber sensing arm was demonstrating the strain sensitivity up to , and we proposed a cascaded MZI, it could improve the sensitivity of the system and decrease the insertion loss by the optical coupler. The strain sensitivity up to .
    The traditional fiber Bragg grating (FBG) was then utilized to show the resonance wavelength caused by the stress parameter using the grating strain effect. The sensitivity could achieve .
    Finally we put the two fiber sensors, SMF-28 fiber and FBG, together for strain monitoring applications. Moreover, the contra-directional narrow linewidth spectrum from FBG was simultaneously utilized as the optical ruler for the cascaded MZI OLCI, which can significantly reduce the cost by eliminating the WDM couplers for traditional optical ruler system. We successfully demonstrated the strain monitoring system for large and small scales by cascaded MZI OLCI with the FBG contra-directional spectrum optical ruler.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 第一章 簡介 1 1.1 研究背景 1 1.2 研究動機 3 1.3 論文結構 4 第二章 光纖感測原理分析 5 2.1 光纖感測 5 2.1.1 感測原理 5 2.1.2 光彈效應與長度效應 6 2.2 馬赫-詹德干涉儀原理與架構 8 2.2.1 光纖干涉儀 8 2.2.2 感測元件介紹 9 2.2.3 馬赫詹德干涉儀原理及架構 10 2.3 低同調干涉技術 11 2.3.1 低同調馬赫詹德干涉儀 11 2.3.2 低同調串聯式馬赫詹德干涉儀 16 2.4 相位錯誤校準 19 第三章 光纖光柵感測原理分析 22 3.1 光纖光柵原理 22 3.1.1 光纖光柵 22 3.1.2 光纖光柵的種類 23 3.2 布拉格光纖光柵的應力效應與溫度效應 25 3.2.1 布拉格光纖光柵的應力效應 27 3.2.2 布拉格光纖光柵的溫度效應 27 3.3 光纖光柵混合式馬赫詹德干涉儀 28 3.4 光纖光柵串聯式馬赫詹德干涉儀 29 第四章 實驗結果與討論 30 4.1 系統中各元件之量測 30 4.1.1 SLD寬頻譜光源之量測 30 4.1.2 WDM分波多工器之量測 32 4.2 布拉格光纖光柵之應變量測結果 34 4.3 低同調干涉應變量測結果 37 4.3.1 馬赫-詹德干涉儀應變量測結果 37 4.3.2 串聯式低同調干涉儀應變量測結果 40 第五章 結論與未來展望 42

    [1] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," Lightwave Technology, Journal of, vol. 15, pp. 1442-1463, 1997.
    [2] T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, Jr., G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," Microwave Theory and Techniques, IEEE Transactions on, vol. 30, pp. 472-511, 1982.
    [3] A. M. Vengsarkar, K. A. Murphy, T. A. Tran, and R. O. Claus, "Novel fiber optic hydrophone for ultrasonic measurements," in Ultrasonics Symposium, 1988. Proceedings., IEEE 1988, pp. 603-606 vol.1, 1988.
    [4] F. J. Madruga, D. Gonzalez, V. Alvarez, J. Echevarria, O. M. Conde, and J. M. Lopez-Higuera, "Field test of noncontact high temperature fiber optic transducer in a steel production plant," in Optical Fiber Sensors Conference Technical Digest, 2002. Ofs 2002, 15th, pp. 483-486 vol.1, 2002.
    [5] H. L. Rivera, J. A. Garcia-Souto, and J. Sanz, "Measurements of mechanical vibrations at magnetic cores of power transformers with fiber-optic interferometric intrinsic sensor," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 6, pp. 788-797, 2000.
    [6] J. Chen and W. J. Bock, "A novel fiber-optic pressure sensor using 1300 nm optical components," in Instrumentation and Measurement Technology Conference, 2002. IMTC/2002. Proceedings of the 19th IEEE, pp. 1743-1746 vol.2, 2002.
    [7] J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, "DP flow sensor using optical fibre Bragg grating," Sensors and Actuators A: Physical, vol. 92, pp. 102-108, 2001.
    [8] H. Wei, C. Hongbo, M. Jiachun, and J. Desheng, "Direct measurement of strain-optic effect in fiber Bragg gratings," in Optical Fiber Sensors Conference Technical Digest, 2002. Ofs 2002, 15th, pp. 171-174 vol.1, 2002.
    [9] N. Seng Lee, T. Swee Chuan, X. Tuqiang, and S. Kian Thiam, "Side-projected fiber-optic velocity sensors," Photonics Technology Letters, IEEE, vol. 10, pp. 249-251, 1998.
    [10] G. A. Cranch and P. J. Nash, "Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM," Lightwave Technology, Journal of, vol. 19, pp. 687-699, 2001.
    [11] Richard Syms, John Cozen, OPTICAL GUIDED WAVES AND DEVICES, McGraw-Hill, 1992
    [12] 王議賢,光纖光柵的研製及其在感測器的應用,國立中正大學,碩士論文,民國九十三年。
    [13] G. Meltz and W. W. Morey, "Bragg gratings formation and germanosilicate fibre photosensitivity," in International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, F. Ouellette, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 185–199, 1991.
    [14] 邱宗炫、黃裕文、夏中和,”光纖光柵應變感測器之溫度與膠合效應之研究,”科儀新知第19 卷1 期,pp. 21-23, 1997
    [15] K. Takada, H. Yamada, and Y. Inoue, "Optical low coherence method for characterizing silica-based arrayed-waveguide grating multiplexers," Lightwave Technology, Journal of, vol. 14, pp. 1677-1689, 1996.
    [16] 張連壁編譯, 光纖感測器, pp.38-53, 文笙書局, 1998.
    [17] V.Vali, R.W.Shorthill and M.F.Berg, " Fresnel-Fizeau Effect in a Rotating Optical Fiber Ring Interferometer , " Appl.Opt., pp.2605-2607, 1977.
    [18] N. Zeng, C. Shi, D. Wang, M. Zhang, and Y. Liao, "Diaphragm-type fiber-optic interferometric acoustic sensor," Opt. Eng. 42, 2558-2562, 2003.
    [19] R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry: a new optical evaluation technique," Opt. Lett., vol. 12, pp. 158-160, 1987.
    [20] D. Inaudi, Fibre optic sensor network for the monitoring of civil engineering structure. Thesis No. 1612. Swiss Federal Institute of Technology, Lausanne, 1997.
    [21] M. Pozzi, D. Zonta, H. Wu, and D. Inaudi, "Development and laboratory validation of in-line multiplexed low-coherence interferometric sensors," Optical Fiber Technology, vol. 14, pp. 281-293, 2008.
    [22] 游輝智,光學低同調干涉技術系統的建構與應用,碩士論文,國立台灣科技大學,民國九十八年。

    QR CODE