簡易檢索 / 詳目顯示

研究生: 劉慶霖
Ching-Lin Liu
論文名稱: 以乙炔為碳源之化學氣相沉積法於複合觸媒上成長奈米碳管
The growth of Carbon Nanotubes on the Multi-layer Catalysts by the Acetylene-based Chemical Vapor Deposition
指導教授: 鄭如茵
Ju-Yin Cheng
郭東昊
Dong-Hau Kuo
口試委員: 薛人愷
none
林惠娟
Huey-Jiuan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 113
中文關鍵詞: 奈米碳管化學氣相沉積法多層觸媒退火行為
外文關鍵詞: Carbon nanotubes; Chemical vapor deposition; Mul
相關次數: 點閱:378下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管 ( Carbon nanotubes, CNTs ) 已經是奈米科技中的一項重要材料,其具有質量輕、高強度、高韌性、可撓曲、高表面積、表面曲度大、高熱導度、導電性優良等特性。奈米碳管的應用非常廣泛,除可應用於複合材料外,還可應用在儲氫材料、微電子元件、場發射顯示器、感測器等儀器及元件。
    本論文先以濺鍍的方式於Si基板上鍍上Ni、Fe、In、Al、Au以及其多層組合,之後採用乙炔為碳源之化學氣相沉積法(Chemical Vapor Deposition, CVD)在單層與多層催化金屬觸媒合成奈米碳管。實驗藉由變化多層催化金屬組合、改變成長溫度,以及將觸媒進行退火處理作為變數來研究在不同條件下對奈米碳管成長的變化,並利用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)及拉曼光譜儀(Raman spectroscopy)針對成長之奈米碳管進行分析。
    結果顯示,Au、Al以及In觸媒與其組合皆無法在本實驗的條件下催化成長奈米碳管。Fe觸媒於650℃下所成長的奈米碳管直徑約15nm,而Ni觸媒於650℃下所成長的奈米碳管直徑則約為20nm~30nm之間。In與Ni的觸媒組合,在反應溫度為650℃下,成長密度比Ni觸媒於同溫度下所成長的一維碳材料還低,但成長出來的一維碳材料較Ni觸媒於同溫度下所成長的一維碳材料有較細直徑。實驗採用Au與Ni或Fe結合的觸媒組合時,可在550℃的成長溫度下催化成長成一維碳材料,但由TEM觀察證實為實心的碳纖維結構。實驗採用Ni/Al層時,於650℃時所成長之一維碳材料,直徑較Ni觸媒所成長的直徑為粗,約為120nm,而在反應溫度為450℃與550℃下,Ni/Al則無法催化成長出一維碳材料。但當Ni/Al層經過700℃退火後,則可在450℃的成長溫度下催化成長出奈米碳管,其直徑大約為20nm。


    Carbon nanotubes (CNTs) is an important material in nanotechnology. It has properties of light weight, high strength, high toughness, flexibility, high surface area, high surface curvature, high thermal conductivity etc. Its applications involve hydrogen storage, field-emission display, microelectronic miniaturization, sensors etc.
    In this study, CNTs were grown by the acetylene-based chemical vapor deposition at 450~750oC on the Si substrates coated by r.f. sputtering with Ni, Fe, In, Al, Au, and their combinations. The factors of catalytic metals, growth temperature, and the annealing temperature for catalytic metals on the CNT growth were investigated. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy were used for characterizations.
    The experimental results showed that In, Au, Al, and their combinations were not the right catalysts for CVD-CNT growth. CNTs with a diameter of 15 nm were produced at 650oC on the Fe-catalyzed substrates, while it was 20~30 nm for the Ni-catalyzed CNTs. In the investigations with the composite catalysts including the combinations of Fe and Ni with In, Au, or Al, thicker 1-D wires were produced at 650oC except for those using the In/Ni catalyst. The thicker 1-D wires grown on the Ni/Al-catalyzed substrates had a diameter of 120 nm. The thick wires produced at 550oC with the Fe/Au and Ni/Au catalysts were identified as the carbon fibers by TEM. No other wires were produced at the growth temperature of 550oC. However, CNTs grown at 450oC by the acetylene-based CVD were obtained after the Ni/Al-catalyzed substrates were pre-sintered at 700oC.

    誌謝 I 中文摘要 II Abstract IV 圖目錄 X 表目錄 XV 第一章 導論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 文獻回顧 4 2-1奈米碳管的發展歷史 4 2-2奈米碳管的構造 6 2-3奈米碳管的特性 9 2.3.1 奈米碳管的機械性質 9 2-3-2 奈米碳管的電性 9 2-3-3 奈米碳管的結構熱穩定性與導熱性 10 2-4奈米碳管的合成方式 11 2-4-1 電弧放電法(Arc discharge) 11 2-4-2 雷射蒸發法(laser ablation) 12 2-4-3 化學氣相沉積法(chemical vapor decomposition) 13 2-5化學氣相沉積法製備奈米碳管的成長機制 15 2-6 化學氣相沉積法成長奈米碳管之觸媒研究 16 2-7 奈米碳管應用 28 2-7-1 強化複合材料 28 2-7-2 顯微探針 28 2-7-3 奈米碳管場發射顯示器 29 2-7-4 奈米碳管場效電晶體 30 2-7-5 儲存氫氣材料 31 第三章 實驗方法與步驟 33 3-1 實驗設備 33 3-1-1 鍍金機 33 3-1-2 直流DC濺鍍機( DC-Sputter ) 33 3-1-3 磁控RF濺鍍機( RF-Sputter ) 33 3-1-4 自組式熱壓機 33 3-1-5 化學氣相沉積系統 34 3-2 實驗藥品選擇 35 3-3 實驗流程 36 3-3-1 基板清洗 37 3-3-2 製作濺鍍靶材 39 3-3-3 濺鍍金屬層 39 3-3-4 化學氣相沉積法成長奈米碳管 40 3-3-5 製程參數及步驟 41 3-4 性質量測及分析儀器 42 3-4-1表面分析 42 3-4-2特徵峰分析 42 3-4-3結構分析 44 第四章 結果與討論 45 4-1不同種類觸媒篩選之表面分析 45 4-1-1單層觸媒種類的篩選 45 4-1-2複合觸媒種類的篩選 47 4-1-3小結 49 4-2不同溫度下成長奈米碳管之表面分析 55 4-2-1 含有Ni的觸媒組合在不同溫度下的表面結構 57 4-2-2 含有Fe的觸媒組合在不同溫度下的表面結構 68 4-2-3 小結 82 4-3退火處理觸媒成長奈米碳管之表面分析 83 4-3-1 Al/Ni觸媒組合經退火處理後的催化成長結果表面分析比較 85 4-3-2 Ni/Al觸媒組合經退火處理後的催化成長結果表面分析比較 88 4-3-3 Au/Ni觸媒組合經退火處理後的催化成長結果表面分析比較 91 4-3-3 Ni/Au觸媒組合經退火處理後的催化成長結果表面分析比較 94 4-3-4 小結 95 4-4不同觸媒成長奈米碳管之特徵峰分析比較 98 4-5不同觸媒成長奈米碳管之TEM結構分析 100 第五章 結論 108 參考文獻 111

    S.Iijima, Nature 354, 56 (1991)
    T. W. Ebbesen, P. M Ajayan, Nature 358, 16 (1992)
    Journet. C., Master W.K., P. Bernier, A. Loiseau, M. L. d. I Chapelle, S. Lefrant;P. Deniard, R.Lee , J. E. Fischer, Nature 388, 756 (1997)
    A. Thess, R. Lee, P. Nikdaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H.Lee, Kim. S. G., A.G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomaken, J. E. Fisher, R. E. Smalley, Science 273, 483 (1996)
    Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, Science 282, 1105 (1998)
    S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai, Science 283, 512 (1999)
    C. Bower, O. Zhou, W. Zhu, D. J. Werder, S. Jin, Appl. Phys. Lett 77, 2767 (2000)
    M. Su, B. Zheng, J. Liu, Chem. Phys. Lett 322, 321 (2000)
    蘇美雲” 東華大學 材料科學與工程學系 碩士論文 ”
    高陳祐“台灣科技大學 高分子工程系 碩士論文”
    http://cnst.rice.edu/smalleygroup/images/allotropes.jpg.
    H. W. Kroto, J. R. Heath, S. C. O’Brian, R. F. Curl, R. E. Smalley, Nature 318, 162 (1985).
    S. Iijima, Nature 354, 56 (1991).
    D.S. Bethune, C.H. Kiang, M.S. Deveries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyars, Nature 363, 605 (1993).
    S. Iijima and T. Ichibashi, Nature 363, 603 (1993).
    M. Su, B. Zheng, J. Liu, Chem. Phys. Lett 322, 321(2000)
    P. J. F. Harris, in Carbon Nanotubes and Related Structures, Cambridge University Press (London), 1999.
    M. R. Falvo, G. J. Clary, R. M. I. I. Taylor, V. Chi, F. P. Brooks, S. Washburn, and R. Superfing, Nature 389, 582 (1997).
    M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).
    E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).
    J. Appenzeller, R. Martel, P. Avouris, et al., Appl. Phys. Lett. 78, 3313 (2001).
    P. G. Collins, A. Zettl, H. Bando, et al., Science 278, 100 (1997).
    S. J. Tans, M. H. Devoret, H. J. Dai, et al., Nature 386, 474 (1997).
    C. Journet and P. Bernier, Appl. Phys. A 67, 169 (1998).
    Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, and S. Iijima, Chem. Phys. Lett. 323, 580 (2000).
    Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, and S. Iijima, Diam. and Relat. Mater. 10, 1185 (2001).
    Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, L. Zhou, K.T. Yue, and S. Zhang, Carbon 37, 1449 (1999).
    T. Guo, P. Nikolaev, et al., J. Phys. Chem. 99, 10694 (1995).
    C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee,W.B. Choi, N.S. Lee, K.-S. Park, J.M. Kim, Chem. Phys. Lett. (1999).
    K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, J. Riga, A. Lucas, Synthetic Metals 77 (1996) 31.
    L.C. Qin, D. Zhou, A.R. Krauss, D.M. Gruen, Appl, Phys. Lett. 72. (1998) 3437.
    (a)J. Kong, H. T. Soh, A. Cassell, C. F. Quate, and H. Dai, Nature (London)395 (1998) 878 ; (b) N. R. Franklin, Y. Li, R. J. Chen, A. Javey, and H. Dai, Appl. Phys. Lett. 79 (2001) 4571.
    G. Gu, G. Philipp, X. Wu, M. Burghard, A. M. Bittner, and S. Roth, Adv.Functional Mater. 11 (2001) 295.
    Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, Science 282 (1998) 1105.
    S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, and H. Dai,
    Science 283 (1999) 512.
    R. Sen, A. Govindaraj, C. N. R. Rao, Chemical Physics Letters, 267 276 (1997).
    H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, and M. S. Dresselhaus, Appl. Phys. Lett., 72 3282. (1998).
    Bei Chen, Ping Wu, Carbon 43, 3172 (2005)
    R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, R. K. Tsui, and P. Fejes, Nano Letters
    3 731, (2003)
    Takuji Komukai, Katsunori Aoki, Hiroshi Furuta, Mamoru Furuta, Kenjiro Oura and Takashi Hirao, Japanese Journal of Applied Physics 45, 6043 (2006)
    Wei-Hung Chiang and R. Mohan Sankaran, Adv. Mater., 20, 4857 (2008)
    S.Z. Mortazavi, A. Reyhani, A. Iraji zad, Applied Surface Science, 254, 6416 (2008)
    P. Landois, A. Peigney, Ch. Laurent, L. Frin, L. Datas, E. Flahaut, Cabon 47, 789 (2009)
    Ramsey M D Stevens, Neil A Frederick, Bettye L Smith, Daniel E Morse, Galen D Stucky and Paul K Hansma, Nanotechnology 11, 1 (2000).
    H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Appl. Phys. Lett. 76, 1776 (2000).
    R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett., 73, 2447 (1998).
    A. Y. Cao, H. W. Zhu, X. F. Zhang , et al., Chem. Phys. Lett. 342, 510 (2001).
    Dresselhaus, M. S., G. Dresselhaus and P. Avouris, Springer press 21 (2001)
    A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S.Bethuune and M. J. Heben, Nature 386, 377 (1997).
    Y. Ye, C. C. Ahn, C. Withham, B. Fultz, J. Liu, A. G. Rinzler, D.Colbert, K. A. Smith and R. E. Smalley, Appl. Phys. Lett. 74, 2307(1999).
    L. C. Chen, K. H. Chen, S. L. Wei, P. D. Kichambare, J. J. Wu, T. R.Lu and C. T. Kuo,Thin Solid Films 355, 112 (1999).
    M. S. Dresselhaus, A. Jorio, A. G. Souza Filho, G. Dresselhaus and R. Saito,, Physica B 323, 15 (2002).
    ASM Binary Alloy Phase Diagram, second edition plus update

    QR CODE