簡易檢索 / 詳目顯示

研究生: 湯漢文
Hon - Vun Tong
論文名稱: 奈米碳管幾何結構的表面傳導電子發射
Surface-conduction electron emitters with geometrical structure of carbon nanotube arrays
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 葉文昌
Wen-chang Yeh
黃鶯聲
Ying-Sheng Huang
邱博文
Po-Wen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 65
中文關鍵詞: 奈米碳管二次電子化學氣相沉積表面傳導電子發射顯示器
外文關鍵詞: carbon nanotubes, secondary electron, chemical vapor deposition, surface-conduction electron-emitter display
相關次數: 點閱:209下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統以表面傳導電子發射原理所製作之顯示器是利用PdO薄膜在玻璃基板上形成一個奈米級的裂縫並藉由此裂縫產生穿遂電子和二次電子,並以此二次電子激發螢光粉。而此奈米級之裂縫太小,在製程上有其複雜度,為了改善其製作複雜度及增加二次電子發射之量,本論文提出一個新的方法,即以奈米碳管為材料利用尖端較易放電之原理,將奈米碳管排列成三角形之幾何結構。本實驗以黃光製程定義此三角形的幾何形狀,並以四個等邊三角形為一單元作爲發射源。再以熱化學氣相沉積法成長300及50單元之奈米碳管陣列。本研究除了探討單純以奈米碳管為發射源之二次電子發射量,並在奈米碳管表面成長氧化鋅奈米結構以增加二次電子之產量。從實驗結果得知,在300單元時,純奈米碳管之二次電子的電流密度為0.80 mA/cm2,而在成長氧化鋅於奈米碳管表面後,其二次電子的電流密度可增加至1.20 mA/cm2。由本實驗結果證實,此結構與氧化鋅成長在奈米碳管之發射源可以改善表面傳導電子發射器之二次電子產量,並可應用於表面傳導電子顯示器。


    Traditional surface electron conduction displays consist of a PdO thin film deposited on glass substrates, creating a nano-sized a gap that produces tunneling electrons and secondary electrons (SEs); the phosphor is excited by the SEs. However, it is not easy to fabricate such a nano-sized gap. The fabrication process is even more complicated. To create a simpler fabrication process and increase the SE yield, a new method is proposed in this study. For this study, carbon nanotubes (CNTs) were arranged in a triangular geometrical structure, for doing so made it much easier to discharge at the tips of CNTs, due to the high electrical field gradient; thus, these four equilateral triangular electrodes acted as a basic element that emitted electronics. Arrays with 300 sets and 50 sets of CNTs were synthesized with a thermal chemical vapor deposition (CVD) system. This study investigated not only the secondary electron emissions (SEEs) of pristine CNTs arrays, but also those of ZnO-coated CNTs arrays. According to the experimental results, for the 300-set arrays, a pristine CNTs array obtained a SE density of 0.80 mA/cm2; for the ZnO-coated CNTs array, the SE current density was increased by up to 1.20 mA/cm2. From the results of this study, it is obvious that the structure and the ZnO nanostructure, the latter of which was coated on the CNTs, improves the SE yield, and it is a promising development in the further development of display technology.

    Contents Abstract (in Chinese)---------------------------------------------------- I Abstract (in English)----------------------------------------------------II Acknowledgement (in Chinese)--------------------------------------------- III Contents ----------------------------------------------------------------IV Figure captions---------------------------------------------------------- VI Table list--------------------------------------------------------------- XI Chapter 1 Introduction--------------------------------------------------- 1 1.1 Motivation-----------------------------------------------------------1 1.1.1 Propose of ZnO-coated CNTs array---------------------------------5 1.2 Historical introduction of carbon nanotubes--------------------------6 1.3 Electrical properties of carbon nanotubes --------------------------- 8 1.4 Carbon nanotubes fabrication-----------------------------------------9 1.5 The carbon nanotubes growth mechanism--------------------------------11 1.6 Application of CNTs-------------------------------------------------- 12 1.6.1 Field emission--------------------------------------------------- 12 1.7 Historical introduction of secondary electron------------------------13 1.7.1 Coefficient of secondary electron emission yield-----------------14 1.7.2 Secondary emission yield of metals and insulators----------------14 1.7.3 Energy distribution of secondary electron------------------------15 1.7.4 Secondary electron emission measurement--------------------------16 1.8 Application of secondary electron------------------------------------ 17 Chapter 2 Experimental method-------------------------------------------- 18 2.1 Experimental procedure ----------------------------------------------18 2.2 Coating system-thermal evaporation for catalyst synthesis-------------22 2.3 Deposition system-thermal chemical vapor deposition for carbon nanotubes-----------------------------------------------------------------25 2.4 Zinc oxide prepared by thermal chemical vapor deposition --------------------------------------------------------------------------27 2.5 Secondary electron emission measurement system------------------------29 2.6 Characterization and analysis of carbon nanotubes---------------------31 Chapter 3 Results and discussion------------------------------------------34 3.1 Synthesis of CNTs array on SiO2/Si substrates-------------------------35 3.1.1 High resolution transmission electron microcopy results of carbon nanotube------------------------------------------------------------------36 3.1.2 Raman spectroscopy of carbon nanotube-------------------------------39 3.2 ZnO-coated CNTs array----------------------------------------40 3.2.1 HRTEM results of carbon nanotube------------------------------------41 3.2.2 XRD result of ZnO-coated carbon nanotube----------------------------42 3.2.3 Raman spectroscopy of ZnO-coated carbon nanotube-------- 43 3.3 Geometrical structure of single-set CNT array----------------44 3.4 Geometrical structure of 50-set CNT array ----------------------------45 3.5 Geometrical structure of 300-set CNT Array----------------------------46 3.6 ZnO-coated single-set CNT array---------------------------------------47 3.7 ZnO-coated 50-set CNT array-------------------------------------------48 3.8 ZnO-coated 300-set CNT array------------------------------------------49 3.9 Arrays with a single set of pristine CNTs or ZnO-coated CNTs ---------50 3.10 Arrays with 50 sets of pristine CNTs or ZnO-coated CNTs--------------53 3.11 Arrays with 300 sets of pristine CNTs or ZnO-coated CNTs-------------55 Chapter 4 Conclusion------------------------------------------------------59 References----------------------------------------------------------------

    1. K.-C. Huang, “Effects of computer icons and figure/background area ratios and color combinations on visual search performance on an LCD monitor”, Displays 29 (2008) 237.
    2. C.-M. Hsu, W.-T. Wu, and H.-H. Lee, “Turn-on voltage reduction of organic light-emitting diode using a nickel-doped indium tin oxide anode prepared by single target sputtering”, Displays 29 (2008) 268.
    3. Y. S. Choi, “Shapes of emitter surface in field emission display”, Thin Solid Films 516 (2007) 3357.
    4. J.-L. Kwo, M. Yokoyama, and I.-N. Lin, “Effects of composition on field emission character of tetrahedral amorphous carbon”, Appl. Surf. Sci. 142 (1999) 521.
    5. T. Oguchi, E. Yamaguchi, K. Sasaki, K. Suzuki, and S. Uzawa, “A 36-inch surface-conduction electron-emitter display (SED)”, J. SID. 36 (2005) 1929.
    6. X.-J. Li, Y.-Y. Wang, and Q.-Z. Shi, “Influence of ball milling parameters on blue phosphor for cathode ray tube”, Displays 29 (2008) 316.
    7. K. Yamamoto, I. Nomura, K. Yamazaki, and S. Uzawa, “Fabrication and characterization of surface conduction electron emitters”, J. SID. 36 (2005) 1933.
    8. W. D. Zhang, J. T. L. Thong, W. C. Tjiu, and L. M. Gan, “Fabrication of vertically aligned carbon nanotubes patterns by chemical vapor deposition for field emitters”, Diam. Relat. Mater. 11 (2002) 1638.
    9. J. Kürti, V. Zólyomi, M. Kertesz, G. Sun, R. H. Baughman, and H. Kuzmany, “Individualities and average behavior in the physical properties of small diameter single-walled carbon nanotubes”, Carbon 42 (2004) 971.

    10. P. Jaroenapibal, D. E. Luzzi, S. Evoy, and S. Arepalli, “Transmission-electron-microscopic studies of mechanical properties of single-walled carbon nanotube bundles”, Appl. Phys. Lett. 85 (2004) 4328.
    11. J. L. Li, G. Z. Bai, J. W. Feng, and W. Jiang, “Microstructure and mechanical properties of hot-pressed carbon nanotubes compacted by spark plasma sintering”, Carbon 43 (2005) 2649.
    12. D. Z. Li, X. Y. Song, S. X. Sun, and J. X. Guo, “A simple method for the preparation of ZnO prickly spheres”, Chinese Chem. Lett. 15 (2004) 733.
    13. A. Lazareck, T.-F. Kuo, J. Xu, B. Taft, S. Kelly, and S. Cloutier, “Optoelectrical characteristics of individual zinc oxide nanorods grown by DNA directed assembly on vertically aligned carbon nanotube tips”, Appl. Phys. Lett. 89 (2006) 103109.
    14. W. K. Yi, T. W. Jeong, S. G. Yu, J. N. Heo, C. S. Lee, J. H. Lee, W. S. Kim, J.-B. Yoo, and J. M. Kim, “Field-emission characteristics from wide-bandgap material-coated carbon nanotubes”, Adv. Mater. 20 (2002) 1464.
    15. S. W. Morgan and M. R. Phillips, “High bandwidth secondary electron detection in variable pressure scanning electron microscopy using a Frisch grid”, J. Phys. D: Appl. Phys. 41 (2008) 055504.
    16. L. Huang, S. P. Lau, H. Y. Yang, and S. F. Yu, “Local measurement of secondary electron emission from ZnO-coated carbon nanotubes”, Nanotechnology 17 (2006) 1564.
    17. W. S. Kim, W. K. Yi, S. G. Yu, J. N. Heo, T. W. Jeong, J. H. Lee, C. S. Lee, J. M. Kim, H. J. Jeong, Y. M. Shin, and Y. H. Lee, “Secondary electron emission from magnesium oxide on multiwalled carbon nanotubes”, Appl. Phys. Lett. 81 (2002) 1098.

    18. J. Y. Pan, C. C. Zhua, and Y. L. Gao, “Enhanced field emission characteristics of zinc oxide mixed carbon nano-tubes films”, Appl. Surf. Sci. 254 (2008) 3787.
    19. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene”, Nature 318 (1985) 162.
    20. S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354 (1991) 56.
    21. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature 363 (1993) 603.
    22. D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature 363 (1993) 605.
    23. A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes”, Science 273 (1996) 483.
    24. T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, “Structure and electronic properties of carbon nanotubes”, J. Phys. Chem. B 104 (2000) 2794.
    25. J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes”, Nature 391 (1998) 59.
    26. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization”, Appl. Phys. A 67 (1998) 29.

    27. E. T. Thostenson, Z. F. Ren, and T.-W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review”, Composites Science and Technology 61 (2001) 1899.
    28. K.-Y. Lee, S.-I. Honda, M. Katayama, T. Kuzuoka, Y.-G. Baek, S. Ohkura, K. Aoki, T. Hirao, and K. Oura, “Synthesis of conical Si array on Si(100) for a field electron emitter by plasma-enhanced chemical vapor deposition”, Thin Solid Films 464 (2004) 194.
    29. C. J. Lee and J. H. Park, “Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition”, Appl. Phys. Lett. 77 (2000) 3397.
    30. S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition”, Chem. Phys. Lett. 315 (1999) 25.
    31. Y. Saito and S. Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon 38 (2000) 169.
    32. J. E. Jung, Y. W. Jin, J. H. Choi, Y. J. Park, T. Y. Ko, D. S. Chung, J. W. Kim, J. E. Jang, S. N. Cha, W. K. Yi, S. H. Cho, M. J. Yoon, C. G. Lee, J. H. You, N. S. Lee, J. B. Yoo, and J. M. Kim, “Fabrication of triode-type field emission displays with high-density carbon-nanotube emitter arrays”, Physical B 323 (2002) 71.
    33. W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J.-P. Schnell, V. Semet, V. T. Binh, and O. Groening, “Carbon nanotubes as field emission sources”, J. Mater. Chem. 14 (2004) 933.
    34. P. W. May, S. Höhn, W. N. Wang, and N. A. Fox, “Field emission conduction mechanisms in chemical vapor deposited diamond and diamondlike carbon films”, Appl. Phys. Lett. 72 (1998) 2182.

    35. J. J. Scholtz and D. Dijkkamp, “Secondary electron emission properties”, Philips J. Res. 50 (1996) 375.
    36. P. Kazemian, S. A. M. Mentink, C. Rodenburg, and C. J. Humphreys, “Quantitative secondary electron energy filtering in a scanning electron microscope and its applications”, Ultramicroscopy 107 (2007) 140.
    37. H. Seiler, “Secondary electron emission in the scanning electron microscope”, J. Appl. Phys. 54 (1983) 1.
    38. T. Nakano and T. Fujimoto, “Measurement of surface roughness and ion-induced secondary electron emission coefficient of MgO films prepared by high-pressure sputter deposition”, Vacuum 74 (2004) 595.
    39. K. Sato, T. Fukushima, and H. Katayama-Yoshida, “Super-paramagnetic blocking phenomena and room-temperature ferromagnetism in wide band-gap dilute magnetic semiconductor (Ga, Mn)N”, Jpn. J. Appl. Phys. 46 (2007) 682.
    40. P. Kazemian, S. A. Mentink, C. Rodenbunrg, and C. J. Humphreys, “Quantitative secondary electron energy filtering in a scanning electron microscope and its applications”, Ultramicroscopy 107 (2007) 140.
    41. H. Fujii, S. Kanemaru, H. Hiroshima, S. M. Gorwadkar, T. Matsukawa, and J. Itoh, “Fabrication and characterization of a nanogap edge emitter with a silicon-on-insulator wafer”, Appl. Surf. Sci. 146 (1999) 203.
    42. W. S. Bacsa, D. Ugarte, A. Châtelain, and W. A. de Heer, “High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes”, Phys. Rev. B 50 (1994) 15473.
    43. S. Ghodbane and A. Deneuville, “Specific features of 325 nm Raman excitation of heavily boron doped polycrystalline diamond films”, Diam. Relat. Mater. 15 (2006) 589.

    44. E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, and T. Nakagiri, “A 10-in. surface-conduction electron-emitter display”, J. SID. 5 (1997) 345.
    45. M. Okuda, S. Matsutani, A. Asai, A. Yamano, K. Hatanaka, T. Hara, and T. Nakagiri, “Electron trajectory analysis of surface conduction electron emitter displays”, J. SID. 14 (1998) 185.
    46. W. Z. Li, H. Zhang, C. Y. Wang, Y. Zhang, L. W. Xu, K. Zhu, and S. S. Xie, “Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor”, Appl. Phys. Lett. 70 (1997) 2684.
    47. C.-Y. Wu, H.-C. Hsu, H.-M. Cheng, S. Yang, and W.-F. Hsieh, “Structural and optical properties of ZnO nanosaws”, J. Crys. Grow. 287 (2006) 189.
    48. T. Kumpika, W, Thongsuwan, and P. Singjai, “Optical and electrical properties of ZnO nanoparticle thin films deposited on quartz by sparking process”, Thin Solid Films 516 (2008) 5640.
    49. J. W. Lee, J. H. Park, J. Y. Kim, and W. K. Yi, “Effect of double layer coating on carbon nanotubes for field emission and secondary electron emission measurement”, J. Vac. Sci. Technol. B 25 (2007) 570.

    QR CODE