簡易檢索 / 詳目顯示

研究生: 許芳綺
Fang-Chi Hsu
論文名稱: 化學氣相沉積硒化鎳奈米片電性與鋰/鈉電池應用研究
Electrical Properties and Lithium/Sodium-Ion Batteries Applications of Nickel Monoselenide (NiSe) Nanoflakes via Chemical Vapor Deposition Method
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 周賢鎧
Shyan-Kay Jou
葉炳宏
Bin-Hong Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 94
中文關鍵詞: 二維材料硒化鎳氣相沉積電性鋰電池鈉電池
外文關鍵詞: 2D materials, Nickel selenide, NiSe, vapor deposition, electrical properties, sodium-ion batteries
相關次數: 點閱:484下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,由於二維奈米結構與相對應的塊材比較時,研究顯示出獨特的物理及化學性質而迅速發展。在這項工作中,首次採用化學氣相沉積法在二氧化矽/矽基板上成長了約12微米的六邊形硒化鎳奈米片,量測硒化鎳奈米片的電性,並從中獲得平行和垂直的電阻率分別為2.79×10 -5(Ω·m)和4.38×10 2(Ω·m)。以上結果顯示,其異向性的電阻率比大約1.4×10 7。此外,硒化鎳奈米片也被用來製備鋰離子電池和鈉離子電池的陽極並加以組裝量測其電池性能,當量測的電流密度為100 mA/g時,則鋰離子電池和鈉離子電池的初始放電容量為522.2和343.8 mAh/g。值得關注的,在鋰離子電池循環性能的量測中,第50次循環的放電容量依然保持在346.3 mAh/g,這顯示出,硒化鎳奈米片在鋰離子電池和鈉離子電池應用中,是具有潛力的陽極材料。


    Recently, the study of two-dimensional (2D) nanostructure has been developed rapidly due to it exhibits many unique physical and chemical properties when compared to their bulk counterparts. In this work, the first-ever study of nickel monoselenide (NiSe) materials used the chemical vapor deposition (CVD) method to synthesize the hexagonal nanoflake-based of NiSe with lateral size of 12 μm on the SiO2/Si substrate. The electrical properties measured that the resistivity of parallel and vertical the nanoflake were resulted in 2.79 x10 -5(Ω·m) and 4.38 x10 2 (Ω·m), respectively. As a result, a large resistivity anisotropy ratio about 1.4 x 10 7 was revealed. Moreover, the NiSe nanoflakes were also taken as anodes for lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), the initial discharge capacities of the NiSe nanoflakes with current density of 100 mA g−1 for LIBs and NIBs are 522.2 and 343.8 mAh g−1, respectively. During the cycle performance measurements for LIBs, the discharge capacity retained at 346.3 mAh g-1 on the 50th cycle which exhibits NiSe nanoflake is a promising candidate for anode material of LIBs and NIBs.

    Chapter 1 Introduction 1.1 Two-Dimensional materials 1.2 Synthesis or acquisition method of 2D Alloys 1.2.1 Mechanical exfoliation method 1.2.2 Solvothermal method 1.2.3 Vapor phase deposition 1.2.3.1 Physical vapor deposition 1.2.3.2 Chemical vapor deposition 1.3 Introduction of nickel selenide 1.3.1 Phase stability of Ni-Se system 1.3.2 Characteristics of NiSe 1.4 The anisotropic properties of nanostructure 1.5 Lithium-ion and sodium-ion batteries 1.6 Research motivation Chapter 2 Experiment procedures 2.1 Experiment procedures of NiSe nanoflakes 2.2 Synthesis of NiSe nanoflakes 2.2.1 Pretreatment for CVD method 2.2.2 Two-zone furnace setup for synthesis 2.3 Characterizations 2.3.1 Field-emission scanning electron microscope 2.3.2 X-ray diffractometer 2.3.3 Transmission electron microscope 2.3.4 Energy dispersion spectrometer 2.4 Electrical properties measurement 2.4.1 Fabrication of top-contact and bottom-top- contact device 2.4.2 Anisotropic electrical properties analysis 2.5 Applications of LIBs and NIBs 2.5.1 Synthesis of NiSe nanoflakes for LIBs and NIBs 2.5.2 Fabrication and assembly of LIBs and NIBs 2.5.3 The measurement of LIBs and NIBs Chapter 3 Results and discussions 3.1 The morphology of NiSe nanoflakes 3.2 Characterization of NiSe nanoflakes 3.2.1 XRD analysis 3.2.2 TEM and EDS analysis 3.3 Anisotropic electrical properties measurement of NiSe nanoflakes 3.4 LIBs and NIBs analysis of NiSe nanoflakes 3.4.1 Morphology of NiSe nanoflakes for LIBs and NIBs as anode 3.4.2 The measurement of NiSe nanoflakes for LIBs and NIBs 3.4.2.1 Electrochemical properties of LIBs 3.4.2.2 Electrochemical properties of NIBs 3.4.2.3 Comparison of LIBs and NIBs Chapter 4 Summary and conclusions Chapter 5 Future works References Appendix

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, 2004, 306, 666-669.
    [2] M. Derivaz, D. Dentel, R. Stephan, M. C. Hanf, A. Mehdaoui, P. Sonnet and C. Pirri, “Continuous Germanene Layer on Al (111),” Nano Lett., 2015, 15, 2510-2516.
    [3] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, “Single-layer MoS2 Transistors,” Nat. Nanotechnol., 2011, 6, 147-150.
    [4] K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett., 2010, 105, 136805.
    [5] T. Cao, G. Wang, W. P. Han, H. Q. Ye, C. R. Zhu, J. R. Shi, Q. Niu, P. H. Tan, E. Wang, B. L. Liu and J. Feng, “Valley-Selective Circular Dichroism of Monolayer Molybdenum Disulphide,” Nat. Commun., 2012, 3, 887.
    [6] B. J. Feng, Z. J. Ding, S. Meng, Y. G. Yao, X. Y. He, P. Cheng, L. Chen and K. H. Wu, “Evidence of Silicene in Honeycomb Structures of Silicon on Ag (111),” Nano Lett., 2012, 12, 3507-3511.
    [7] C. H. Zhang, L. Fu, S. L. Zhao, Y. Zhou, H. L. Peng and Z. F. Liu, “Controllable Co‐Segregation Synthesis of Wafer‐scale Hexagonal Boron Nitride Thin Films,” Adv. Mater., 2014, 26, 1776-1781.
    [8] L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen and Y. B. Zhang, “Black Phosphorus Field-Effect Transistors,” Nat. Nanotechnol., 2014, 9, 372-377.
    [9] W. J. Zhang, C. T. Lin, K. K. Liu, T. Tite, C. Y. Su, C. H. Chang, Y. H. Lee, C. W. Chu, K. H. Wei, J. L. Kuo and L. J. Li, “Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping,” ACS Nano, 2011, 5, 7517-7524.
    [10] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim and K. S. Novoselov, “Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane,” Science, 2009, 323, 610-613.
    [11] J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan and E. S. Snow, “Properties of Fluorinated Graphene Films,” Nano Lett., 2010, 10, 3001-3005.
    [12] J. Wu, L. M. Xie, Y. G. Li, H. L. Wang, Y. J. Ouyang, J. Guo and H. J. Dai, “Controlled Chlorine Plasma Reaction for Noninvasive Graphene Doping,” J. Am. Chem. Soc., 2011, 133, 19668-19671.
    [13] Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen and F. Wang, “Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene,” Nature, 2009, 459, 820-823.
    [14] Goki Eda, Hisato Yamaguchi, Damien Voiry, Takeshi Fujita, Mingwei Chen and Manish Chhowalla, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Letters, 2011, 11, 5111-5116.
    [15] Zhenhua Sun and Haixin Chang, “Graphene and Graphene-Like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology,” ACS Nano, 2014, 8, 4133-4156.
    [16] Huang, Xiao, Zhiyuan Zeng and Hua Zhang, “Metal Dichalcogenide Nanosheets: Preparation, Properties and Applications,” Chemical Society Reviews, 2013, 42, 1934-1946.
    [17] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman and Michael S. Strano1, “Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides,” Nature Nanotechnology, 2012, 7, 699-712.
    [18] Manish Chhowalla, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh and Hua Zhang, “The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets,” Nature Chemistry, 2013, 5, 263-275.
    [19] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard1, C. R. Dean, “One-Dimensional Electrical Contact to a Two-Dimensional Material,” Science, 2013, 342, 614-617.
    [20] Zongyou Yin, Hai Li, Hong Li, Lin Jiang, Yumeng Shi, Yinghui Sun, Gang Lu, Qing Zhang, Xiaodong Chen and Hua Zhang, “Single-Layer MoS2 Phototransistors”, ACS Nano, 2011, 6, 74-80.
    [21] Jonathan C. Shaw, Hailong Zhou1, Yu Chen, Nathan O. Weiss, Yuan Liu, Yu Huang and Xiangfeng Duan, “Chemical Vapor Deposition Growth of Monolayer MoSe2 Nanosheets”, Nano Research, 2014, 7, 511-517.
    [22] Charina L. Choi, Ju Feng, Yanguang Li, Justin Wu, Alla Zak, Reshef Tenne and Hongjie Dai, “WS2 Nanoflakes from Nanotubes for Electrocatalysis”, Nano Research, 2013, 6, 921-928.
    [23] Hai Li, Jumiati Wu, Zongyou Yin and Hua Zhang, “Preparation and Applications of Mechanically Exfoliated Single-Layer and Multi-Layer MoS2 and WSe2 Nanosheets”, Accounts of Chemical Research, 2014, 47, 1067-1075.
    [24] Wanyin Ge, Kenji Kawahara, Masaharu Tsuji and Hiroki Ago, “Large Scale Synthesis of NbS2 Nanosheets with Controlled Orientation on Graphene by Ambient Pressure CVD”, Nanoscale, 2013, 5, 5773-5778.
    [25] Enze Zhang, Yibo Jin, Xiang Yuan, Weiyi Wang, Cheng Zhang, Lei Tang, Shanshan Liu, Peng Zhou, Weida Hu and Faxian Xiu, “ReS2‐Based Field‐Effect Transistors and Photodetectors”, Advanced Functional Materials, 2015, 25, 4076-4082.
    [26] Kai Xu, Zhenxing Wang, Feng Wang, Yun Huang, Fengmei Wang, Lei Yin, Chao Jiang and Jun He, “Ultrasensitive Phototransistors Based on Few‐Layered HfS2”, Advanced Materials, 2015, 27, 7881-7887.
    [27] Xufan Li, Ming-Wei Lin, Alexander A. Puretzky, Juan C. Idrobo, Cheng Ma, Miaofang Chi, Mina Yoon, Christopher M. Rouleau, Ivan I. Kravchenko, David B. Geohegan and Kai Xiao, “Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse”, Scientific Reports, 2014, 4, 5497.
    [28] Ding-Jiang Xue, Jiahui Tan, Jin-Song Hu, Wenping Hu, Yu-Guo Guo, and Li-Jun Wan, “Anisotropic Photoresponse Properties of Single Micrometer‐Sized GeSe Nanosheet”, Advanced Materials, 2012, 24, 4528-4533.
    [29] Yu Ye, Bin Yu, Zhiwei Gao, Hu Meng, Hui Zhang, Lun Dai and Guogang Qin, “Two-Dimensional CdS Nanosheet-Based TFT and LED Nanodevices”, Nanotechnology, 2012, 23, 194004.
    [30] Chun Li, Liang Huang, Gayatri Pongur Snigdha, Yifei Yu and Linyou Cao, “Role of Boundary Layer Diffusion in Vapor Deposition Growth of Chalcogenide Nanosheets: The Case of GeS”, ACS Nano, 2012, 6, 8868-8877.
    [31] Srinivasa Reddy Tamalampudi, Yi-Ying Lu, Rajesh Kumar U., Raman Sankar, Chun-Da Liao, Karukanara Moorthy B., Che-Hsuan Cheng, Fang Cheng Chou and Yit-Tsong Chen, “High Performance and Bendable Few-Layered InSe Photodetectors with Broad Spectral Response”, Nano letters, 2014, 14, 2800-2806.
    [32] Joshua O. Island, Michele Buscema, Mariam Barawi, José M. Clamagirand, José R. Ares, Carlos Sánchez, Isabel J. Ferrer, Gary A. Steele and Herre S. J. van der Zant, “Ultrahigh Photoresponse of Few‐Layer TiS3 Nanoribbon Transistors”, Advanced Optical Materials, 2014, 2, 641-645.
    [33] Alexey Lipatov, Peter M. Wilson, Mikhail Shekhirev, Jacob D. Teeter, Ross Netusila and Alexander Sinitskii, “Few-Layered Titanium Trisulfide (TiS3) Field-Effect Transistors”, Nanoscale, 2015, 7, 12291-12296.
    [34] Ki Kang Kim, Allen Hsu, Xiaoting Jia, Soo Min Kim, Yumeng Shi, Mario Hofmann, Daniel Nezich, Joaquin F. Rodriguez-Nieva, Mildred Dresselhaus, Tomas Palacios and Jing Kong, “Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition”, Nano Letters, 2011, 12, 161-166.
    [35] Guoxiu Wang, Xiaoping, ShenJane Yao and Jinsoo Park, “Graphene Nanosheets for Enhanced Lithium Storage in Lithium Ion Batteries”, Carbon, 2009, 47, 2049-2053.
    [36] Han Liu, Adam T. Neal, Zhen Zhu, Zhe Luo, Xianfan Xu, David Tománek and Peide D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with A High Hole Mobility”, ACS Nano, 2014, 8, 4033-4041.
    [37] Min Yi and Zhigang Shen, “A Review on Mechanical Exfoliation for The Scalable Production of Graphene”, Journal of Materials Chemistry A, 2015, 3, 11700-11715.
    [38] Azam Sobhani, Masoud Salavati-Niasari and Fatemeh Davar, “Shape Control of Nickel Selenides Synthesized by a Simple Hydrothermal Reduction Process”, Polyhedron, 2012, 31, 210-216.
    [39] Masoud Salavati-Niasari and Azam Sobhani, “Effect of Nickel Salt Precursors on Morphology, Size, Optical Property and Type of Products (NiSe or Se) in Hydrothermal Method”, Optical Materials, 2013, 35, 904-909.
    [40] Xing Zhang, Yun Zhang, Bin-Bin Yu, Xing-Liang Yin, Wen-Jie Jiang, Yan Jiang, Jin-Song Hu and Li-Jun Wan, “Physical Vapor Deposition of Amorphous MoS2 Nanosheet Arrays on Carbon Cloth for Highly Reproducible Large-Area Electrocatalysts for The Hydrogen Evolution Reaction”, Journal of Materials Chemistry A, 2015, 3, 19277-19281.
    [41] Xing-Hua Ma, Ki-Hyun Cho and Yun-Mo Sung, “Growth Mechanism of Vertically Aligned SnSe Nanosheets via Physical Vapour deposition”, CrystEngComm, 2014, 16, 5080-5086.
    [42] Jiadong Zhou, Qingsheng Zeng, Danhui Lv, Linfeng Sun, Lin Niu, Wei Fu, Fucai Liu, Zexiang Shen, Chuanhong Jin and Zheng Liu, “Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition”, Nano Letters, 2015, 15, 6400-6405.
    [43] Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. Long Hsu, K. Zhang, H. Li, Z.Y. Juang, M. S. Dresselhaus, L.J. Li and J. Kong, “Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition,” Nano Lett., 2010, 10, 4134-4139.
    [44] A. L. Elias, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutierrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. Lopez-Urias, H. Terrones and M. Terrones, “Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers,” ACS Nano, 2013, 7, 5235-5242.
    [45] S. J. Yun, S. H. Chae, H. Kim, J. C. Park, J. H. Park, G. H. Han, J. S. Lee, S. M. Kim, H. M. Oh, J. Seok, M. S. Jeong, K. K. Kim, Y. H. Lee, “Synthesis of Centimeter-Scale Monolayer Tungsten Disulfide Film on Gold Foils,” ACS Nano, 2015, 9, 5510-5519.
    [46] I. Bilgin, F. Liu, A. Vargas, A. Winchester, M. K. Man, M. Upmanyu, K. M. Dani, G. Gupta, S. Talapatra, A. D. Mohite and S. Kar, “Chemical Vapor Deposition Synthesized Atomically Thin Molybdenum Disulfide with Optoelectronic-Grade Crystalline Quality,” ACS Nano, 2015, 9, 8822-8832.
    [47] D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazic, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, I. M. A. Fontcuberta, A. Radenovic and A. Kis, “Large-Area Epitaxial Monolayer MoS2,” ACS Nano, 2015, 9, 4611-4620.
    [48] Zhongbin Zhuang, Qing Peng, Jing Zhuang, Xun Wang, and Yadong Li, “Controlled Hydrothermal Synthesis and Structural Characterization of a Nickel Selenide Series,” Chemistry-A European Journal, 2006, 12, 211-217.
    [49] K Anuar, Z Zainal, N Saravanan and A.R Kartini, “Cathodic Electrodeposition and Characterization of Ni3Se2 Thin Films,” ASEAN Journal on Science and Technology for Development, 2017, 21, 19-25.
    [50] A. T. Swesi, J. Masud and M. Nath, “Nickel Selenide as a High-Efficiency Catalyst for Oxygen Evolution Reaction,” Energy & Environmental Science, 2016, 9, 1771-1782.
    [51] Xiao Zhang, Mengmeng Zhen, Jinwu Bai, Shaowei Jin, and Lu Liu, “Efficient NiSe-Ni3Se2/Graphene Electrocatalyst in Dye-Sensitized Solar Cells: The Role of Hollow Hybrid Nanostructure,” ACS Applied Materials & Interfaces, 2016, 8, 17187-17193.
    [52] Liwei Mi, Qi Ding, Weihua Chen, Li Zhao, Hongwei Hou, Chuntai Liu, Changyu Shen and Zhi Zheng, “3D Porous Nano/Micro Nickel Sulfides with Hierarchical Structure: Controlled Synthesis, Structure Characterization and Electrochemical Properties,” Dalton Transactions, 2013, 42, 5724-5730.
    [53] Haiqing Zhou, Yumei Wang, Ran He, Fang Yu, Jingying Sun, Feng Wang, Yucheng Lan, Zhifeng Ren and Shuo Chen, “One-Step Synthesis of Self-Supported Porous NiSe2/Ni Hybrid Foam: An Efficient 3D Electrode for Hydrogen Evolution Reaction,” Nano Energy, 2016, 20, 29-36.
    [54] Feng Gong, Xin Xu, Zhuoqun Li, Gang Zhoua and Zhong-Sheng Wang, “NiSe2 as an Efficient Electrocatalyst for a Pt-Free Counter Electrode of Dye-Sensitized Solar Cells,” Chemical Communications, 2013, 49, 1437-1439.
    [55] Tingting Liu, Abdullah M. Asiri and Xuping Sun, “Electrodeposited Co-Doped NiSe2 Nanoparticles Film: A Good Electrocatalyst for Efficient Water Splitting,” Nanoscale, 2016, 8, 3911-3915.
    [56] Ming-Zhe Xue, Zheng-Wen Fu and Zheng-Wen, “Lithium Electrochemistry of NiSe2: A New Kind of Storage Energy Material,” Electrochemistry Communications, 2006, 8, 1855-1862.
    [57] Jung Sang Cho, Seung Yeon Lee and Yun Chan Kanga, “First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber,” Scientific Reports, 2016, 6, 23338.
    [58] Narayanasamy Sabari Arul and Jeong In Han, “Facile Hydrothermal Synthesis of Hexapod-Like Two Dimensional Dichalcogenide NiSe2 for Supercapacitor,” Materials Letters,” 2016, 181, 345-349.
    [59] C.E.M. Camposa, J.C. de Limaa, T.A. Grandia, K.D. Machadoa, P.S. Pizani and R. Hinrichs, “Nucleation and Growth of Nanocrystalline Pyrite Nickel Diselenide by Mechanical Alloying,” Solid State Communications, 2003, 128, 229-234.
    [60] Graham A. Shaw, Daniel E. Morrison and Ivan P. Parkin, “Solid State Synthesis of Binary Metal Chalcogenides,” Journal of The Chemical Society, Dalton Transactions, 2001, 0, 1872-1875.
    [61] Geoff Henshaw, Ivan P. Parkin and Graham A. Shaw, “Convenient, Room-Temperature Liquid Ammonia Routes to Metal Chalcogenides,” Journal of The Chemical Society, Dalton Transactions, 1997, 2, 231-236.
    [62] Sobhani, Azam and Masoud Salavati-Niasari, “Sodium Dodecyl Benzene Sulfonate-Assisted Synthesis through a Hydrothermal Reaction,” Materials Research Bulletin, 2012, 47, 1905-1911.
    [63] Sobhani, Azam and Masoud Salavati-Niasari, “Synthesis and Characterization of a Nickel Selenide Series via a Hydrothermal Process,” Superlattices and Microstructures, 2014, 65, 79-90.
    [64] Jian Yang, Guang-Hui Cheng, Jing-Hui Zeng, Shu-Hong Yu, Xian-Ming Liu and Yi-Tai Qian, “Shape Control and Characterization of Transition Metal Diselenides MSe2 (M= Ni, Co, Fe) Prepared by a Solvothermal-Reduction Process,” Chemistry of Materials, 2001, 13, 848-853.
    [65] Shuguang Chen, Kai Zeng, Yande Song, Haibin Li, Peng Liu and Fujin Li, “Systematical Shape Evolution of Hexagonal NiSe Crystals Caused by Mixed Solvents and Ammonium Chloride,” Journal of Crystal Growth, 2012, 358, 57-63.
    [66] Xian Zhang, Fengqiong SHI and Kun Zhang, “Controlled Hydrothermal Synthesis of NiSe Nanospheres and Nanorod Bundles,” International Journal of Intelligent Information and Management Science, 2014, 3, 35-38
    [67] Yanyan Duan, Qunwei Tang, Benlin He, Ru Li and Liangmin Yu, “Transparent Nickel Selenide Alloy Counter Electrodes for Bifacial Dye-Sensitized Solar Cells Exceeding 10% Efficiency,” Nanoscale, 2014, 6, 12601-12608.
    [68] Liwei Mi, Hui Sun, Qi Ding, Weihua Chen, Chuntai Liu, Hongwei Hou, Zhi Zheng and Changyu Shen, “3D Hierarchically Patterned Tubular NiSe with Nano-/Microstructures for Li Ion Battery Design,” Dalton Transactions, 2012, 41, 12595-12600.
    [69] Yin Yang, Jiabin Liu, He-Qun Dai, Yanhua Cui, Jinsong Liu, Xiaojiang Liu and Zheng-Wen Fu, “Pulsed Laser Deposited NiO–NiSe Nanocomposite as a New Anode Material for Lithium Storage,” Journal of Alloys and Compounds, 2016, 661, 190-195.
    [70] Zhian Zhang, Xiaodong Shi and Xing Yang, “Synthesis of Core-Shell NiSe/C Nanospheres as Anodes for Lithium and Sodium Storage,” Electrochimica Acta, 2016, 208, 238-243.
    [71] Yanhua Cui, Hequn Dai, Xiaojiang Liu and Zhengwen Fu, “Composite NiO-NiSe Thin Film Fabricated by Pulse Laser Deposition as a New Anode of Lithium Ion Batteries,” The Electrochemical Society, 2014, 5, 449-449.
    [72] Min-Rui Gao, Zhao-Yang Lin, Tao-Tao Zhuang, Jun Jiang, Yun-Fei Xu, Ya-Rong Zheng and Shu-Hong Yu, “Mixed-Solution Synthesis of Sea Urchin-Like NiSe Nanofiber Assemblies as Economical Pt-free Catalysts for Electrochemical H2 Production,” Journal of Materials Chemistry, 2012, 22, 13662-13668.
    [73] Chun Tang, Ningyan Cheng, Zonghua Pu, Wei Xing and Xuping Sun, “NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting,” Angewandte Chemie, 2015, 127, 9483-9487.
    [74] Tang Chun, Abdullah M. Asiri and Sun Xuping, “Highly-Active Oxygen Evolution Electrocatalyzed by a Fe-Doped NiSe Nanoflake Array Electrode,” Chemical Communications, 2016, 52, 4529-4532.
    [75] Xiaoli Zhou, Yun Liu, Huanxin Ju, Bicai Pan, Junfa Zhu, Tao Ding, Chunde Wang and Qing Yang, “Design and Epitaxial Growth of MoSe2–NiSe Vertical Heteronanostructures with Electronic Modulation for Enhanced Hydrogen Evolution Reaction,” Chemistry of Materials, 2016, 28, 1838-1846.
    [76] Kun Xu, Hui Ding, Kaicheng Jia, Xiuli Lu, Pengzuo Chen, Tianpei Zhou, Han Cheng, Si Liu, Changzheng Wu and Yi Xie, “Solution‐Liquid‐Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst,” Angewandte Chemie International Edition, 2016, 55, 1710-1713.
    [77] Qiang Zhao, Dazhong Zhong, Lin Liu, Dandan Li, Genyan Hao and Jinping Li, “Facile Fabrication of Robust 3D Fe–NiSe Nanowires Supported on Nickel Foam as a Highly Efficient, Durable Oxygen Evolution Catalyst,” Journal of Materials Chemistry A, 2017, 5, 14639-14645.
    [78] Ruiqin Gao, Guo-Dong Li, Jiabo Hu, Yuanyuan Wu, Xinran Lian, Dejun Wang and Xiaoxin Zou, “In-Situ Electrochemical Formation of NiSe/NiOx Core/Shell Nano-Electrocatalysts for Superior Oxygen Evolution Activity,” Catalysis Science & Technology, 2016, 6, 8268-8275.
    [79] Zhong Gao, Jing Qi, Mingxing Chen, Wei Zhang and Rui Cao, “An Electrodeposited NiSe for Electrocatalytic Hydrogen and Oxygen Evolution Reactions in Alkaline Solution,” Electrochimica Acta, 2017, 224, 412-418.
    [80] Mark S. Gudiksen, Lincoln J. Lauhon, Jianfang Wang, David C. Smith and Charles M. Lieber, “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,” Nature, 2002, 415, 617-620.
    [81] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo and Peidong Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, 2001, 292, 1897-1899.
    [82] Mikael T. Björk, B. Jonas Ohlsson, Claes Thelander, Irene Persson, K. Deppert, L. Reine Wallenberg and Lynne A. Samuelson, “Nanowire Resonant Tunneling Diodes,” Applied Physics Letters, 2002, 81, 4458-4460.
    [83] Yi Cui and Charles M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science, 2001, 291, 851-853.
    [84] Hailin Peng, Chong Xie, David T. Schoen and Yi Cui, “Large Anisotropy of Electrical Properties in Layer-Structured In2Se3 Nanowires,” Nano Letters, 2008, 8, 1511-1516.
    [85] Yichao Zou, Zhi-Gang Chen, Yang Huang, Lei Yang, John Drennan, and Jin Zou, “Anisotropic Electrical Properties from Vapor−Solid−Solid Grown Bi2Se3 Nanoribbons and Nanowires,” The Journal of Physical Chemistry. C, 2014, 118, 20620-20626.
    [86] Whittingham and M. Stanley, “Electrical Energy Storage and Intercalation Chemistry,” Science, 1976, 192, 1126-1127.
    [87] Xiaopeng Chen, Weixiang Shen and Thanh Tu Vo, “An Overview of Lithium-Ion Batteries for Electric Vehicles,” IPEC, 2012 Conference on Power & Energy. IEEE, 230-235.
    [88] Bruno Scrosati, Jusef Hassoun and Yang Kook Sun, “Lithium-Ion Batteries. A Look into the Future,” Energy Environ Sci., 2011, 4, 3287-3295
    [89] Liwen Ji, Zhan Lin, Mataz Alcoutlabi and Xiangwu Zhang, “Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries,” Energy Environ. Sci., 2011, 4, 2682-2699.
    [90] Wei Lv, Dai-Ming Tang, Yan-Bing He, Cong-Hui You, Zhi-Qiang Shi, Xue-Cheng Chen, Cheng-Meng Chen, Peng-Xiang Hou, Chang Liu and Quan-Hong Yang, “Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage,” ACS Nano, 2009, 3, 3730-3736.
    [91] Shuangqiang Chen, Peng Chen, Minghong Wu, Dengyu Pan and Yong Wanga, “Graphene Supported Sn–Sb@ Carbon Core-Shell Particles as a Superior Anode for Lithium Ion Batteries,” Electrochemistry Communications, 2010, 12, 1302-1306.
    [92] Jia-Zhao Wang, Chao Zhong, Shu-Lei Chou and Hua-Kun Liu, “Flexible Free-Standing Graphene-Silicon Composite Film for Lithium-Ion Batteries,” Electrochemistry Communications, 2010, 12, 1467-1470.
    [93] A. Vadivel Murugan, T. Muraliganth and A. Manthiram, “Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Storage,” Chemistry of Materials, 2009, 21, 5004-5006.
    [94] Dengyu Pan, Song Wang, Bing Zhao, Minghong Wu, Haijiao Zhang, Yong Wang and Zheng Jiao, “Li Storage Properties of Disordered Graphene Nanosheets,” Chemistry of Materials, 2009, 21, 3136-3142.
    [95] M Broussely, P Biensan, B Simon, “Lithium Insertion into Host Materials: The Key to Success for Li Ion Batteries,” Electrochimica Acta, 1999, 45, 3-22.
    [96] Charles de las Casas and Wenzhi Li, “A Review of Application of Carbon Nanotubes for Lithium Ion Battery Anode Material,” Journal of Power Sources, 2012, 208, 74-85.
    [97] Sung-Soo Kim, Yoshihiro Kadoma, Hiromasa Ikuta, Yoshiharu Uchimoto and Masataka Wakihara, “Electrochemical Performance of Natural Graphite by Surface Modification Using Aluminum,” Electrochemical and Solid-State Letters, 2001, 4, A109-A112.
    [98] Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jonghwan Kim, Chi-Yung Chim, Giulia Galli and Feng Wang, “Emerging Photoluminescence in Monolayer MoS2,” Nano Letters, 2010, 10, 1271-1275.
    [99] Kun Chang, Weixiang Chen, Lin Ma, Hui Li, He Li, Feihe Huang, Zhude Xu, Qingbo Zhang and Jim-Yang Lee, “Graphene-Like MoS 2/Amorphous Carbon Composites with High Capacity and Excellent Stability as Anode Materials for Lithium Ion Batteries,” Journal of Materials Chemistry, 2011, 21, 6251-6257.
    [100] Guoxiu Wang, Bei Wang, Xianlong Wang, Jinsoo Park, Shixue Dou, Hyojun Ahn and Kiwon Kim, “Sn/Graphene Nanocomposite with 3D Architecture for Enhanced Reversible Lithium Storage in Lithium Ion Batteries,” Journal of Materials Chemistry, 2009, 19, 8378-8384.
    [101] Zhen Wang, Tao Chen, Weixiang Chen, Kun Chang, Lin Ma, Guochuang Huang, Dongyun Chen and Jim Yang Lee, “CTAB-Assisted Synthesis of Single-Layer MoS2–Graphene Composites as Anode Materials of Li-Ion Batteries,” Journal of Materials Chemistry A, 2013, 1, 2202-2210.
    [102] Michael D. Slater, Donghan Kim, Eungje Lee and Christopher S. Johnson, “Sodium‐Ion Batteries,” Advanced Functional Materials, 2013, 23, 947-958.
    [103] Yun Huang, Kai Xu, Zhenxing Wang, Tofik Ahmed Shifa, Qisheng Wang, Feng Wang, Chao Jianga and Jun He, “Designing The Shape Evolution of SnSe2 Nanosheets and Their Optoelectronic Properties,” Nanoscale, 2015, 7, 17375-17380.
    [104] Chih-Shan Tan, Shih-Chen Hsu, Wei-Hong Ke, Lih-Juann Chen and Michael H. Huang, “Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals,” Nano Letters, 2015, 15, 2155-2160.
    [105] Chun-Hong Kuo, Yu-Chen Yang, Shangjr Gwo and Michael H. Huang, “Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Au−Cu2O Core−shell Heterostructures,” Journal of the American Chemical Society, 2010, 133, 1052-1057.
    [106] S.L. Chou, J.Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H.K. Liu and S.X. Dou, “High-Surface-Area -Fe2O3/Carbon Nanocomposite: One-Step Synthesis and its Highly Reversible and Enhanced High-Rate Lithium Storage Properties,” J. Mater. Chem., 2010, 20, 2092-2098.
    [107] Janez Jamnik and Joachim Maier, “Nanocrystallinity Effects in Lithium Battery Materials Aspects of Nano-Ionics,” Physical Chemistry Chemical Physics, 2003, 5, 5215-5220.
    [108] Yongming Sun, Nian Liu and Yi Cui, “Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries,” Nature Energy, 2016, 1, 16071.
    [109] Zhijia Du, Jianlin Li, C. Daniel and D.L. Wood III, “Si Alloy/Graphite Coating Design as Anode for Li-Ion Batteries with High Volumetric Energy Density,” Electrochimica Acta, 2017, 254, 123-129.
    [110] Dong Hee Son, Steven M. Hughes, Yadong Yin and A. Paul Alivisatos, “Cation Exchange Reactions in Ionic Nanocrystals,” Science, 2004, 306, 1009-1012.
    [111] Ayaskanta Sahu, Moon Sung Kang, Alexander Kompch, Christian Notthoff, Andrew W. Wills, Donna Deng, Markus Winterer, C. Daniel Frisbie and David J. Norris, “Electronic Impurity Doping in CdSe Nanocrystals,” Nano Letters, 2012, 12, 2587-2594.
    [112] Vladimir A. Vlaskin, Charles J. Barrows, Christian S. Erickson and Daniel R. Gamelin, “Nanocrystal Diffusion Doping,” Journal of The American Chemical Society, 2013, 135, 14380-14389.
    [113] Jun Zhang, Shengwei Liu, Jiaguo Yu and Mietek Jaroniec, “A Simple Cation Exchange Approach to Bi-Doped ZnS Hollow Spheres with Enhanced UV and Visible-Light Photocatalytic H2-Production Activity,” Journal of Materials Chemistry, 2011, 21, 14655-14662.
    [114] P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert and L. Samuelson, “Controlled Polytypic and Twin-Plane Superlattices in III–V Nanowires,” Nature Nanotechnology, 2009, 4, 50-55.
    [115] Jaehyun Park and Sang-Wook Kim, “CuInS2 / ZnS Core/Shell Quantum Dots by Cation Exchange and their Blue-Shifted Photoluminescence,” Journal of Materials Chemistry, 2011, 21, 3745-3750.
    [116] Karel Lambert, Bram De Geyter, Iwan Moreels and Zeger Hens, “PbTe| CdTe Core| Shell Particles by Cation Exchange, a HR-TEM Study,” Chemistry of Materials, 2009, 21, 778-780.
    [117] Zhang W, Jin WS, Fukushima T, Saeki A, Seki S and Aida T, “Supramolecular Linear Heterojunction Composed of Graphite-Like Semiconducting Nanotubular Segments,” Science, 2011, 334, 340-343.
    [118] Pu Xian Gao, Yong Ding, Wenjie Mai, William L. Hughes, Changshi Lao and Zhong Lin Wang, “Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices,” Science, 2005, 309, 1700-1704.
    [119] Joseph M. Luther, Haimei Zheng, Bryce Sadtler and A. Paul Alivisatos, “Synthesis of PbS Nanorods and other Ionic Nanocrystals of Complex Morphology by Sequential Cation Exchange Reactions, “Journal of the American Chemical Society, 2009, 131, 16851-16857.

    無法下載圖示 全文公開日期 2023/02/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2033/02/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE