簡易檢索 / 詳目顯示

研究生: 林鼎將
TING-CHIANG LIN
論文名稱: 矽基板線鋸加工之表面形貌分析研究
Surface Topography Analysis on Substrates Silicon by Wire Sawing
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 鍾俊輝
Chun-hui Chung
趙崇禮
Chao-Choung Lii
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 156
中文關鍵詞: 複線式線鋸切割技術太陽能矽基板表面形貌
外文關鍵詞: multi-wire sawing, silicon substrate, surface topography
相關次數: 點閱:430下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著國際石油價格提高,永續性替代能源與製造成為研究主要方向,以矽(Si)為材料的太陽能基板主要由複線式線鋸切割技術(multi-wire sawing)進行切削。本研究主目的為建立線鋸分析程式(Wire Sawing Analysis, WSA),分析切削前載液性質、切削後矽基板之表面形貌(surface topography)與估算切削後材料移除率 (material removal rate, MRR)。本研究設定兩組參數(WS-1、WS-2) 實際鋸切多晶矽晶錠,針對兩款不同黏度載液進行分析,以擬塑性流體(pseudoplastic fluid)之概念進行指數擬合(ostwal-deWaele equation),定義漿料黏度影響因子(slurry viscosity factor, SVF)與漿料敏感度(slurry sensitivity, SS),量測切削後基板表面粗糙度、基板厚度變化量與次表面破壞層(subsurface damage),並對切削後基板表面進行快速傅立葉分析(fast Fourier transform, FFT),探討基板形貌頻率振幅強度與頻率位置變化。由實驗結果可知,參數WS-1之黏度影響因子(SVF)為499.98、漿料敏感度 (SS)為-0.037比WS-2之SVF為461.5、SS為-0.045造成較大的切口損失(kerf-loss)與材料移除率(MRR)。此外,本研究所建立線鋸分析程式(WSA)未來可運用在不同載液與不同參數條件下所切削之矽基板形貌分析。


    Multi-wire sawing process has been widely used to fabricate silicon substrates for solar cells application. This research is to develop the process model of wire sawing based on wire sawing analysis (WSA). Main parts of WSA include slurry viscosity factor (SVF) and slurry sensitivity (SS) obtained by ostwal-deWaele equation, the estimated of cutting kerf-loss and material removal rate (MRR). Two sawing parameters (WS-1 and WS-2) of free abrasive sawing (FAS) processes have been used to test WSA model by slicing polycrystalline silicon ingots. A viscosimeter is used to measure the slurry viscosity with variant temperature and the slurry film is calculated by dipping the wire into slurry at different temperature to estimate the kerf loss and MRR. The measured results of total thickness variation (TTV), surface topography, and subsurface damage are used to evaluate the feasibility of different slurry by slurry viscosity factor (SVF) and slurry sensitivity (SS). Fast Fourier transform (FFT) is used to analyze the frequency amplitude and frequency position of surface topography on different silicon substrates. Result of SVF as 499.98 and SS as -0.037 with WS-1 has obtained the higher kerf loss and MRR than those of WS-2 which SVF as 461.5 and SS as -0.045 after slicing. Both of subsurface damage and 3-D roughness parameters appeared better performance of WS-1 with higher viscosity. Results of this study could be used to analysis the carrier properties, surface topography, and estimate the cutting performance to investigate the effect of different cutting parameters.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 符號表 第一章 緒論 1.1研究背景 1.2矽基板表面形貌對粗糙化製程的影響 1.3研究目的與方法 1.4論文架構 第二章 文獻回顧 2.1硬脆材料破壞模式探討 2.2線鋸切割製程文獻回顧 2.3表面形貌文獻回顧 2.4文獻回顧總結 第三章 製程分析與表面形貌理論介紹 3.1游離磨料線鋸切割製程分析 3.2 三維表面形貌參數介紹 3.2.1三維輪廓算術平均偏差(arithmetic mean height, Sa) 3.2.2三維輪廓均方根偏差(root mean square height, Sq) 3.2.3三維輪廓高低差(maximum height peak to valley, Sz) 3.3頻率分析 3.3.1頻率分析條件 3.3.2頻譜分析於表面形貌 3.4材料移除率 3.4.1漿料膜厚度 3.4.2漿料膜材料移除率估算 3.4.3實際材料移除率估算 第四章 實驗設備與規劃 4.1實驗設備 4.1.1複線式線鋸切割機 4.2.量測設備 4.2.1轉子型數位黏度計 4.2.3雷射粒徑分析儀 4.2.4 MTS拉伸試驗機 4.2.5掃描式電子顯微鏡 4.2.7表面干涉儀 4.2.6 雙束型發射聚焦離子束顯微鏡 4.3實驗耗材介紹 4.3.1矽晶錠(多晶矽) 4.3.2磨料(碳化矽) 4.3.3載液 (二甘醇Diethylene Glycol, DEG) 4.3.4切割鋼線 4.4實驗規劃 4.4.1矽基板切削參數設定 4.4.2矽基板表面粗糙度量測 4.4.3矽基板次表面破壞深度量測 4.4.4總厚度變化量與各基板厚度變化量測(Total thickness variation, TTV & Between wafer thickness variation, BWTV) 第五章 實驗結果與討論 5.1載液與漿料黏度測試 5.2 漿料膜厚度 5.3溫度與下切深度對照 5.4表面粗糙度 5.5矽基板次表面破壞量測 5.5矽基板總厚度變化量 5.6快速傅立葉頻譜分析結果 5.6.1一維快速傅立葉分析結果 5.6.2二維快速傅立葉分析結果 5.7材料移除率 5.7.1漿料膜估算於材料移除率 5.7.2實際材料移除率估算 第六章 結論與建議 6.1結論 6.2建議 參考文獻 附錄A 表面形貌參數規範 附錄B線鋸機之機台規格 附錄C 線鋸用漿料粒徑分佈量測與粒徑規範 附錄D 線鋸用漿料沾覆鋼線之重量量測 附錄E 矽基板表面粗糙度量測 附錄F 矽基板表面形貌頻譜分析 附錄G 程式操作說明 作者簡介

    [1] 林明獻,“太陽電池技術入門”,全華圖書,2007年。
    [2] H.J. Möller, C. Funke, “Multicrystalline silicon for solar cells”, Journal of Thin Solid Films, 487, 179– 187, 2005.
    [3] L.A. Dobrzański, A. Drygała, “Surface texturing of multicrystalline silicon solar cells”, Journal of Achievements in Materials and Manufacturing Engineering, 77-82, 2008.
    [4] 黃惠良,“太陽電池 Solar Cells”,五南圖書,2009年。
    [5] 顧鴻濤,“太陽電池元件導論”,全威圖書,2008年。
    [6] C. P. Chen, M.H. Leipold, “Fracture toughness of silicon”, American Ceramic Society, Vol. 59, 469-472, 1980.
    [7] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements”, Journal of the American Ceramic Society, Vol. 64, No. 9, 533-538, 1981.
    [8] P. Chantikul, G.R. Anstis, B.R. Lawn, D.B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method”, Journal of the American Ceramic Society, Vol. 64, No. 9, 539-543, 1981.
    [9] D.B. Marshall, B.R. Lawn, A.G. Evans, “Elastic/Plastic indentation damage in ceramics: the lateral crack system”, Journal of the American Ceramic Society, Vol. 65, NO.11, 561-566, 1982.
    [10] M. Buijs, K. Korpel, “Three-body abrasion of brittle materials as studied bu lapping”, Wear, 166, 237-245, 1993.
    [11] M.A.Verspui, M. Buijs, “Bed thickness and particle size distribution in three-body abrasion”, Wear,188, 102-107, 1995.
    [12] S.Malkin, T.W. Hwang, “Grinding mechanisms for ceramics”, Annals of the ClRP , Vol. 45, pp.569-580, 1996.
    [13] B.Bhushen, “Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices”, Journal of Materials Science, 12, 54-63, 1997.
    [14] 陳啟宗,“機械性質與加工條件對硬脆材料刻劃加工之影響”,國立成功大學機械工程研究所碩士論文,2004年。
    [15] S.D. Aylin, G. Mustafa, Microhardness and fracture toughness of dental materials by indentation Method, Wiley Inter Science, pp.257-264, 2005.
    [16] H.T. oung, H.T. Liao, “Novel method to investigate the critical depth of cut of ground silicon wafer”, Journal of Materials Processing Technology, Vol.182, 157–162, 2007.
    [17] F. ang, I. Kao, “Free abrasive machining in slicing brittle materials with wire saw ”, Transaction of the ASME, vol.123, 254-259, 2001.
    [18] T. Shibata, K. Shinohara, “Lapping performance guide of poly-crystal diamond particles through morphological analysis”, Diamond and Related Materials, Vol.10, 376-382, 2001.
    [19] 廖運炫、許春耀,“脆性材料線鋸切割”,機械工業雜誌,pp.122-129,2002年5月。
    [20] S. Nishijima, . Izumi, “Recycling of abrasive from wasted slurry by
    superconducting magnetic separation”, IEEE transactions on applied superconductivity, vol.13, 1596-1599, 2003.
    [21] W. I. Clark, A. J. Shih, C. W. Hardin, R. L. Lemaster, S. B. McSpadden, “Fixed Abrasive Diamond Wire Machining-Part I: Process Monitoring and Wire Tension Force,” International Journal of Machine Tools & Manufacture, Vol.43, pp. 523–532, 2003.
    [22] W. I. Clark, A. J. Shih, C. W. Hardin, R. L. Lemaster, S. B. McSpadden, “Fixed Abrasive Diamond Wire Machining-Part II: Process Monitoring and Wire Tension Force,” International Journal of Machine Tools & Manufacture, Vol.43, pp. 523–532, 2003.
    [23] 陳建民,“鑽石線鋸切割碳化矽與氧化鋁陶瓷材料之特性研究”,清華大學動力機械工程學系碩士論文,2003年。
    [24] 顏柏輝,“微細鑽石線鋸鋸切特性與磨耗之研究”,國立清華大學動力機械工程研究所碩士論文,2004年。
    [25] 沈岳文,“游離再生磨粒線切割加工對矽晶圓品質特性之影響”,國立雲林科技大學機械工程研究所碩士論文,2004年。
    [26] J. M. Kim, . K. Kim, “Saw-Damage-Induced structural defects on the surface of silicon crystals“, Journal of the Electrochemical Society” , Vol.152, 189-192, 2005.
    [27] 左培倫,鄭嘉葳,“晶圓切割技術-固定磨粒鑽石線鋸切割研究”,機械工業雜誌,37-41,2005年。
    [28] D. Kray, M. Schumann, “Solar wafer sling with loose and fixed grains” , IEEE, 948-951, 2006.
    [29] K.I. Ishikawa, H. Suwabe, S.I. Itoh, “Study on slurry actions in slicing groove and slicing characteristics at multi-wire saw”, Conference of Taiwan Society for Abrasive Technology, 2006.
    [30] Z.H. Cheng, C.K. Xu, “The vibration and control of multi-wire saw”, IEEE, 735-738, 2007.
    [31] G. Du, L. Zhou, “Hard inclusion and their detrimental effects on the wire sawing process of multi-crystalline silicon”, Solar Energy Materials & Solar Cells, Vol.91, 1743-1748, 2007.
    [32] 梁峻碩,“線鋸切割太陽能基板之研究”,國立台灣科技大學機械工程研究所碩士論文,2008年。
    [33] 郭柄麟,“漿料特性分析於矽晶片線鋸切割影響研究”,國立台灣科技,大學機械工程研究所碩士論文,2009年。
    [34] C-C. A. Chen, B. L. Kuo, J. S. Liang, “Chip Size Estimation for Effective Blending Ratio of Slurries in Wire Sawing of Silicon Wafers for Solar Cells,” Advanced Materials Research, Vols.76-78, pp.422-427, 2009.
    [35] 趙培勛,“導輪磨耗於線鋸切割影響研究”,國立台灣科技大學機械工程研究所碩士論文,2011年。
    [36] Arve Holt, Annett Thogersen, “Surface Structure of mono-crystalline silicon wafers produced by diamond wire sawing and by standard slurry sawing before and after etching in alkaline solutions”, IEEE, 0160-8371, 2010.
    [37] C-C.A. Chen, “Integration of Surface and Finishing Process Models in Automated Surface Finishing System”, Ph. D. Dissertation, UW-Madison, 1994.
    [38] 尹德宏,“Motif、FFT及碎形維度法在加工面之表面形貌分析與比較”,私立淡江大學機械工程研究所碩士論文,1997年。
    [39] C-C.A. Chen, Handout of manufacturing analysis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2006.
    [40] ISO 4287, Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters”, 1997.
    [41] ISO 25178, “Geometrical product specifications (GPS).-Surface texture. Areal. Terms, definitions and surface texture parameters, 2012.
    [42] E. Oran Brigham, The fast Fourier transform and its applications, 1988.
    [43] R. Munson, Fundamentals of Fluid Mechanics sixth edition, 2009.

    QR CODE