簡易檢索 / 詳目顯示

研究生: 王政原
Cheng-Yuan Wang
論文名稱: 表面起始原子轉移自由基聚合接枝圖案化聚甲基丙烯酸-甲基丙烯酸磺基甜菜鹼共聚高分子刷 用於光學檢測全血下鼠疫桿菌
Fabrication of Poly (Methacrylic acid-co- Sulfobetaine methacrylate) via Surface-Initiated Atom Transfer Radical Polymerization on silicon substrate for application of Yersinia pestis in whole blood detection with the laser system
指導教授: 蘇舜恭
Shuenn-Kung Su
口試委員: 陳建光
Jem-Kun Chen
鄭智嘉
Chih-Chia Cheng
許蕙玲
Hui-Ling Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 132
中文關鍵詞: 原子轉移自由基聚合法共聚高分子鼠疫桿菌抗生物沾黏高分子繞射光柵微影製程
外文關鍵詞: Atom-transfer-radical-polymerization(ATRP), Yersinia pestis
相關次數: 點閱:224下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為設計一共聚高分子材料以偵測人血中的鼠疫桿菌(Yersinia pestis),在檢測的同時屏除白細胞的干擾。基材為線/間距比率為1:1.5的圖案化光阻矽晶圓表面聚合高分子,使之呈現線寬為1、1.5、2、3μm的一維光柵。以此結構利用原子轉移自由基聚合(Atom Transfer Radical Polymerization, ATRP)製備甲基丙烯酸 (Poly(methacrylic acid),PMAA)與甲基丙烯酸磺基甜菜鹼(Poly(sulfobetaine methacrylate),SBMA)的共聚高分子刷。接著利用PMAA末端有-COOH官能基,透過EDC/NHS的反應接上Protein G與鼠疫桿菌F1抗原之單株抗體(Anti-Yp F1 MoAb),進行鼠疫桿菌偵測,而PSBMA 的雙離子性可抵抗生物分子沾黏,達到抗沾黏且可抓取特定細胞的目的。
    檢驗方式利用雷射因光柵繞射產生的能量散失,對不同的高分子比例製備共聚高分子刷,測試出在五種比例中PMAA:PSBMA(50:50)對Yersinia pestis專一性抓取的雷射能量變化量最大,且在白細胞沾黏導致的雷射能量變化量最小。
    接著對於0 CFU/ml -106 CFU/ml做鼠疫桿菌檢體濃度靈敏度測試,並透過螢光顯微鏡觀察螢光佐證,結果顯示隨著鼠疫檢體濃度的上升,雷射繞射強度呈現下降的趨勢,其靈敏度可達到濃度101 CFU/ml,而螢光顯微鏡已無法發現鼠疫桿菌的螢光存在,說明雷射檢測鼠疫桿菌的靈敏度較螢光顯微鏡來的高。而線寬1um的圖案化晶片對於不同濃度的鼠疫桿菌有較佳的偵測靈敏度與定量能力,非常有潛力作為即時檢測鼠疫桿菌的技術。


    We successfully fabricated patterned silicone wafer with PMAA and PSBMA co-polymer brush onto the surface by applying in-situ ATRP method in this experiment.

    The results show that we have grown polymer brush in patterned silicon wafer in an aspect ratio of 1:1.5 which one dimension grating width is 1/ 1.5 / 2 / 3 um . By means of AFM to investigate the height relationship with other factor of polymer brush, XPS and FT-IR to analyze the constitution of the surface.

    Subsequently, we use surface modification techniques with anti-body in order to capture Yersinia pestis by means of applying EDC/NHS reaction to combined carboxylic acid functional group of PMMA with Protein G and Anti-Yp (F1-MoAb). Fulfilling all the vacancy with BSA to change the surface with anti-fouling property, and then fully washed and test with Yersinia pestis detection.

    The detection method theory utilizes laser energy loss due to grating diffraction. The sample concentration of 0 CFU/ml -106 CFU/ml is determined by using CLSM to analysis fluorescence intensity of modified patterned polymer brush combined with Yersinia pestis.

    The copolymer unit is prepared and copolymerized at different polymer ratios. Polymer brushes tested that the sensitivity of PMAA:PSBMA (50:50) ratios in the presence of the laser in human blood was superior to other ratios performance which showed better sensitivity to Yersinia pestis and more than 99% anti-fouling ability of leukocyte.

    The results showed that higher concentration of Yersinia pestis, lower intensity the laser diffraction we get. The sensitivity could reach a maximum concentration of 101 CFU/ml. However, the fluorescence of the Yersinia pestis could not be detected by CLSM, indicating the sensitivity of the laser detection is higher than CLSM fluorescent detection method.

    The patterned wafer with a line width of 1um has better detection sensitivity for different concentrations of Yersinia pestis, and showed great potential as a tool for fast detection of Yersinia pestis.

    指導教授推薦書 I 審定書 II 摘要 III ABSTRACT V 致謝 VII 目錄 IX 1. 緒論 1 1.1. 研究背景 1 1.2. 研究目的 2 2. 理論與文獻回顧 3 2.1. 高分子刷簡介 3 2.2. 自組裝單分子層 7 2.3. 原子轉移自由基聚合法 9 2.4. 液態除氣法 12 2.5. 智能型高分子 14 2.6. 微影製程 17 2.7. 晶圓蝕刻 24 2.8. 聚甲基丙烯酸(PMAA) 27 2.9. 聚甲基丙烯酸磺基甜菜鹼(PSBMA) 28 2.10. 共價鍵固定法(EDC/NHS REACTION) 29 2.11. 重組蛋白與抗體 31 2.12. 光柵效應 31 3. 儀器簡介 35 3.1. 電漿蝕刻機(PLASMA MACHINE) 35 3.2. 原子力顯微鏡 (AFM) 37 3.3. 掃描式電子顯微鏡 (SEM) 42 3.4. X射線光電能譜儀 (XPS) 43 3.5. 雷射掃描共軛焦顯微鏡(CLSM) 46 3.6. 傅立葉轉換紅外線光譜儀 (FT-IR) 47 3.7. 陣列雷射光束分析儀(BEAMMIC) 52 3.8. 接觸角 (CA) 55 4. 實驗流程與方法 58 4.1. 實驗流程圖 58 4.2. 實驗藥品 59 4.3. 實驗儀器 63 4.4. 實驗步驟 65 4.4.1. 微影製程製備圖案化光阻層 65 4.4.2. 蝕刻製程製備圖案化矽晶圓 68 4.4.3. 圖案化矽晶片表面起始聚合高分子刷 68 4.4.4. 表面起始ATRP聚合PMAA高分子刷 71 4.4.5. 表面起始ATRP聚合PSBMA高分子刷 72 4.4.6. 表面起始ATRP聚合PMAA-co-PSBMA高分子刷 73 4.4.7. 表面改質ProtrinG與Anti-Yp F1M0Ab 74 4.5. 白血球抗沾黏實驗 75 4.5.1. 血液樣品處理 75 4.5.2. 白血球接種 75 4.5.3. 白血球固定與染色 75 4.6. 細菌抓取、標記 76 4.6.1. 鼠疫桿菌Yersinia pestis 76 4.6.2. 螢光標定 76 5. 結果與討論 77 5.1. 圖案化表面分析 77 5.1.1. 微影製程光阻圖案 77 5.1.2. 線寬型光阻圖案 78 5.2. 矽晶片表面高分子刷分析 80 5.2.1. 高分子刷表面分析 80 5.2.2. FT-IR 85 5.2.3. ESCA光譜 86 5.2.4. 接觸角親疏水測定 92 5.3. 光學性質 94 5.3.1. 可見光繞射 94 5.3.2. 雷射繞射 95 5.3.3. 高分子雷射偵檢 97 5.3.4. 雷射細胞偵檢 102 5.4. 不同比例高分子共聚物抗沾黏表現 105 5.4.1. 白血球抗沾黏測定 105 5.4.2. 白血球對雷射偵檢之影響 108 5.5. 各比例高分子共聚物上專一性抓取之表現 110 5.5.1. 各比例高分子共聚物上之螢光表現 110 5.5.2. 各比例共聚高分子雷射偵檢之表現 113 5.6. 以晶片偵測YERSINIA PESTIS之偵測極限分析 114 5.6.1. 各濃度Yersinia pestis之螢光表現 114 5.6.2. 全血下各濃度Yersinia Pestis之螢光表現 117 5.6.3. 各濃度Yersinia Pestis之雷射偵檢之表現 120 6. 結論 123 參考文獻 125 保密同意書 132

    [1] N. Bunjes, S. Paul, J. Habicht, O. Prucker, J. Rühe, and W. Knoll, "On the swelling behavior of linear end-grafted polystyrene in methanol/toluene mixtures," Colloid and Polymer Science, vol. 282, pp. 939-945, 2004.
    [2] P. de Gennes, "Conformations of polymers attached to an interface," Macromolecules, vol. 13, pp. 1069-1075, 1980.
    [3] B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Progress in Polymer Science, vol. 25, pp. 677-710, 2000.
    [4] S. Milner, "Polymer brushes," Science, vol. 251, pp. 905-914, 1991.
    [5] Y. T. M. Ejaz, T. Fukuda, "Controlled grafting of a well-defined polymer on porous glass filter by surface-initiated atom transfer radical polymerization," polymer, vol. 42, pp. 6811-6815, 2001.
    [6] M. B. a. J. R. he, "Preparation and Characterization of a Polyelectrolyte Monolayer Covalently Attached to a Planar Solid Surface," Macromolecules, vol. 32, pp. 2309-2316, 1999.
    [7] W. J. B. B. Zhao, "Polymer brushes surface-immobilized macromolecules," Prog. Polym. Sci, vol. 25, pp. 677-710, 2000.
    [8] A. Kopf, J. Baschnagel, J. Wittmer, and K. Binder, "On the adsorption process in polymer brushes: a Monte Carlo study," Macromolecules, vol. 29, pp. 1433-1441, 1996.
    [9] R. Zajac and A. Chakrabarti, "Irreversible polymer adsorption from semidilute and moderately dense solutions," Physical Review E, vol. 52, p. 6536, 1995.
    [10] W.C. Bigelow, D.L. Pickett, W.A. Zisman, "Film adsorbed from solotion in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946.
    [11] R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society, vol. 105, pp. 4481-4483, 1983.
    [12] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold," Journal of the American Chemical Society, vol. 113, pp. 7152-7167, 1991.
    [13] D. G. a. S. M. Husson, "Room Temperature Growth of Surface-Confined Poly(acrylamide) from Self-Assembled Monolayers Using Atom Transfer Radical Polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
    [14] D. Gopireddy and S. M. Husson, "Room temperature growth of surface-confined poly (acrylamide) from self-assembled monolayers using atom transfer radical polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
    [15] B. M. E. Delamarche, H. Kang, and Ch. Gerber, "Thermal Stability of Self-Assembled Monolayers," Langmuir, vol. 10, pp. 4103-4108, 1994.
    [16] J. A. H. a. J. P. Youngblood, "Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane," Langmuir, vol. 22, pp. 11142-11147, 2006.
    [17] S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," The Journal of Physical Chemistry B, vol. 103, pp. 4212-4217, 1999.
    [18] J.-K. Chen, J.-H. Wang, C.-C. Cheng, J.-Y. Chang, and F.-C. Chang, "Polarity-indicative two-dimensional periodic relief gratings of tethered poly (methyl methacrylate) on silicon surfaces for visualization in volatile organic compound sensing," Applied Physics Letters, vol. 102, p. 151906, 2013.
    [19] G. Masci, L. Giacomelli, and V. Crescenzi, "Atom Transfer Radical Polymerization ofN-Isopropylacrylamide," Macromolecular Rapid Communications, vol. 25, pp. 559-564, 2004.
    [20] K. M. a. J. Xia, "Atom Transfer Radical Polymerization," Chem. Rev., vol. 101, pp. 2921-2990, 2001.
    [21] T. Bhuvana, B. Kim, X. Yang, H. Shin, and E. Kim, "Reversible Full Color Generation with Patterned Yellow Electrochromic Polymers," Angewandte Chemie International Edition, vol. 52, pp. 1180-1184, 2013.
    [22] Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano letters, vol. 5, pp. 5-9, 2005.
    [23] Y.-H. Ho, K.-H. Ting, K.-Y. Chen, S.-W. Liu, W.-C. Tian, and P.-K. Wei, "Omnidirectional antireflection polymer films nanoimprinted by density-graded nanoporous silicon and image improvement in display panel," Optics express, vol. 21, pp. 29827-29835, 2013.
    [24] E. Costa, M. Coelho, L. M. Ilharco, A. Aguiar-Ricardo, and P. T. Hammond, "Tannic Acid Mediated Suppression of PNIPAAm Microgels Thermoresponsive Behavior," Macromolecules, vol. 44, pp. 612-621, 2011/02/08 2011.
    [25] Qiaolan Zhang, Fan Xia, Taolei Sun, Wenlong Song, Tianyi Zhao, Mancang Liua, and Lei Jiang, "Wettability switching between high hydrophilicity at low pH and high hydrophobicity at high pH on surface based on pH-responsive polymer," Chem. Commun. vol. 16, pp. 1199–1201, January 16 2008.
    [26] H. Xiao, "半導體製程技術導論,羅正忠和張鼎張譯," ed:二版,臺灣培生教育出版,臺北市,民國九十三年, 2007.
    [27] P. M. Morse, P. M. Morse, and P. M. Morse, Vibration and sound vol. 2: McGraw-Hill New York, 1948.
    [28] Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, et al., "Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties," The Journal of Physical Chemistry B, vol. 107, pp. 7406-7413, 2003.
    [29] Y. S. F. J. Xu, Z. P. Cheng, X. L. Zhu, and E. T. K. C. X. Zhu, and K. G. Neoh, "Controlled Micropatterning of a Si(100) Surface by Combined Nitroxide-Mediated and Atom Transfer Radical Polymerizations," Macromolecules, vol. 38, pp. 6524-6528, 2005.
    [30] F. Zhou, L. Jiang, W. Liu, and Q. Xue, "Fabrication of Chemically Tethered Binary Polymer-Brush Pattern through Two-Step Surface-Initiated Atomic-Transfer Radical Polymerization," Macromolecular Rapid Communications, vol. 25, pp. 1979-1983, 2004.
    [31] Rong Dong, Sitaraman Krishnan, Barbara A. Baird, Manfred Lindau, and Christopher K. Ober, "Patterned Biofunctional Poly(acrylic acid) Brushes on Silicon Surfaces," Biomaterials, vol. 8, pp. 3082-3092, 2007.
    [32] M. Zhu, G. Baffou, N. Meyerbröker, and J. Polleux, "Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion," ACS nano, vol. 6, pp. 7227-7233, 2012.
    [33] SANTONICOLA, M. Gabriella, et al. Reversible pH-controlled switching of poly (methacrylic acid) grafts for functional biointerfaces. Langmuir, 2010, 26.22: 17513-17519.
    [34] SANJUAN, Sarah; TRAN, Yvette. Stimuli-responsive interfaces using random polyampholyte brushes. Macromolecules, 2008, 41.22: 8721-8728.
    [35] PATTEN, Timothy E.; MATYJASZEWSKI, Krzysztof. Atom transfer radical polymerization and the synthesis of polymeric materials. Advanced Materials, 1998, 10.12: 901-915.
    [36] Synthesis of Poly(methacrylic acid) Brushes via Surface-Initiated Atom Transfer Radical Polymerization of Sodium Methacrylate and Their Use as Substrates for the Mineralization of Calcium Carbonate
    [37] XU, F. J., et al. Functionalized polylactide film surfaces via surface-initiated ATRP. Macromolecules, 2011, 44.7: 2371-2377.
    [38] XU, F. J.; WANG, Z. H.; YANG, W. T. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials, 2010, 31.12: 3139-3147.
    [39] COSTANTINI, Francesca, et al. Enzyme-functionalized polymer brush films on the inner wall of silicon–glass microreactors with tunable biocatalytic activity.Lab on a Chip, 2010, 10.24: 3407-3412.
    [40] P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Diirig, W. Hgberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer and G. Binnig. "Ultrahigh density, high-data-rate NEMS-based AFM data storage system "P. Vettiger et al. / Microelectronic Engineering 46 (1999) 11-17
    [41] J.SPieper, THafmans, J.HVeerkamp, T.Hvan Kuppevelt’'Development of tailor-made collagen–glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects’’
    [42] Xiao-Feng Hua & Tian-Cai Liu & Yuan-Cheng Cao &Bo Liu & Hai-Qiao Wang & Jian-Hao Wang &Zhen-Li Huang & Yuan-Di Zhao''Characterization of the coupling of quantum dots and immunoglobulin antibodies''Anal Bioanal Chem (2006) 386:1665–1671
    [43] Qian Feng, D. Tang, H.Lv, W. Zhang and W. Li. " Temperature-responsive zinc oxide nanorods arrays grafted with poly(N-isopropylacrylamide) via SI-ATRP " RSC Adv., 2015, 5, 62024
    [44] Hemavathy Surikumarana, Sharifah Mohamada, Norazilawati Muhamad Sarih. "Synthesis and evaluation of methacrylic acid functionalized β-cyclodextrin based molecular imprinted polymer for 2,4-dichlorophenol in water samples " Desalination and Water Treatment, 2015, 254-267
    [45]Boguang Yang, Changyong Wang, Yabin Zhang, Lei Ye, Yufeng Qian, Yao Shu, Jinmei Wang, Junjie Li and Fanglian Yao. " A thermoresponsive poly(N-vinylcaprolactam-co-sulfobetaine methacrylate) zwitterionic hydrogel exhibiting switchable anti-biofouling and cytocompatibility" Polym. Chem., 2015, 6, 3431-3442
    [47] KOJIMA, Taisuke; TAKAYAMA, Shuichi. Patchy Surfaces Stabilize Dextran–Polyethylene Glycol Aqueous Two-Phase System Liquid Patterns. Langmuir, 2013, 29.18: 5508-5514.
    [67] Lei Lei, Hao Li, et al. Diffraction Patterns of a Water-Submerged Superhydrophobic Grating under Pressure. Langmuir, 2010, 26 (5), pp 3666–3669

    無法下載圖示 全文公開日期 2023/06/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE