簡易檢索 / 詳目顯示

研究生: 游程凱
Cheng-Kai Yu
論文名稱: 以流體繞射晶片結合聚苯乙烯球之三明治分析形式建立高靈敏度鼠疫桿菌莢膜蛋白抗原偵測
Development of a highly sensitive detection assay for Yersinia pestis F1 capsular antigen by diffraction chip and polystyrene microspheres in sandwich format
指導教授: 陳建光
Jem-Kun Chen
口試委員: 陳建光
Jem-Kun Chen
鄭智嘉
Chih-Chia Cheng
張棋榕
Chi-Jung Chang
許蕙玲
Hui-Ling Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 185
中文關鍵詞: 繞射晶片聚苯乙烯球雷射檢測鼠疫桿菌三明治分析形式
外文關鍵詞: Diffraction chip, Polystyrene, Laser monitoring, Yersinia pestis, Sandwich format
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為設計流體繞射晶片(Diffraction chip,DC)及聚苯乙烯球(Polystyrene,PS)偵測的鼠疫桿菌F1莢膜蛋白抗原(Yersinia pestis F1 capsular antigen)。基材上分別有柱型及線型兩種微結構,間距比率為1:1.5 的圖案化光阻矽晶圓。以此結構利用氧電漿機,進行表面電漿活化,矽烷類自組裝改質( (3-Aminoproyl)triethoxysilane,APTES )。接著利用APTES 末端有-NH2 官能基,透過EDC/NHS 結合 Protein G ,再利用生物親合法接枝鼠疫桿菌F1抗原之單株抗體(F1-4B5-3 MoAb),進行F1抗原抓取。由於檢驗原理是用雷射會因基材表面規律的微結構產生光柵繞射,當基材表面結合到F1抗原標的時,微結構受到破壞的影響所產生的能量損失進行偵測,但抗原的三維尺寸較小,對微結構的影響有限,使的偵測受限,需額外建立三明治分析方式以增強訊號。三明治分析方式由聚苯乙烯微球為基材,改質上 Protein G與鼠疫桿菌F1抗原之多株抗體(Rabbit anti-F1 antibodies)後與被晶片抓取之抗原做結合,達到微結構破壞,增強光學訊號之目的。
    接著對10 µg/ml ~ 12.5 pg/ml F1抗原濃度做靈敏度測試,並透過雷射共軛焦顯微鏡觀察螢光及高解析度場發射掃描式電子顯微鏡觀察表面形貌佐證,結果顯示當聚苯乙烯微球與晶片表面抗原結合時,雷射繞射強度呈現下降的趨勢,且下降的幅度與抗原濃度呈線性關係,其對F1抗原偵測極限濃度為25 pg/ml,說明利用雷射能量檢測F1抗原的靈敏度和其他文獻所提到的相比較高。而柱型及線型繞射晶片對於不同濃度的F1抗原經過光學訊號放大後所作出的線性回歸之相關係數值為0.9701及0.9792,非常有潛力作為即時檢測抗原的技術,並期望往後可以應用在檢測其他的病毒蛋白抗原。


    This study designed a Diffraction chip (DC) and a Polystyrene microspheres (PS) to detect the Yersinia pestis F1 capsular antigen in the target. The substrate is a patterned photoresist silicon wafer with a pillar type and a line type with a pitch ratio of 1:1.5. With this structure, the oxygen plasma machine is used to perform surface plasma activation and silane self-assembly modification((3-Aminoproyl)triethoxysilane,APTES). Then, APTES, using the -NH2 functional group, bind Protein G through EDC/NHS, and then use the monoclonal antibody (F1-4B5-3 MoAb) to graft the F1 antigen of Yersinia pestis by bioaffinity to capture the F1 antigen. Because the principle of detection is that the laser has grating diffraction due to the regular microstructures on the surface, and compare it to the energy loss caused by the destruction of the microstructure. But the three-dimensional size of the antigen is small, and the damage to the microstructure is limited. Make detection unaccuracy. An additional sandwich analysis method is needed to enhance the signal. The sandwich analysis method uses polystyrene microspheres, modified with Protein G and multiclonal antibody (Rabbit anti-F1) of Yersinia pestis F1 antigen, and then combined with the antigen caught by the diffraction chip to achieve microstructure destruction and enhanced the optical signals.
    Then, the sensitivity test was performed on the F1 antigen concentration of 10 µg/ml ~ 12.5 pg/ml, and the fluorescence was observed by Confocal Laser Scanning Microscope (CLSM) and the surface morphology was observed by Field-emission scanning electron microscope (FE-SEM). When the polystyrene microspheres are combined with the antigen on the surface of the chip, the laser diffraction intensity showed a linear decreasing trend, and the detection limit concentration was 25 pg/ml, which indicated that the sensitivity of using laser energy to detect F1 antigen was high. The pillar type and line type diffraction chips for different concentrations of F1 antigen after optical signal enhancing has correlation coefficient value of 0.9701 and 0.9792, which have great potential as a technology for rapid detection of antigens and are expected to be applied in the future. Detect other viral protein antigen signals.

    摘要 ABSTRACT 致謝 目錄 圖目錄 表目錄 1. 緒論 1.1. 研究背景 1.2. 研究動機與目的 2. 文獻回顧與實驗理論 2.1. 鼠疫桿菌 2.2. 微流道 2.3. 生物特性標記 2.4. 光柵效應 2.5. 雷射系統偵測 2.6. 微影製程及翻模 2.7. 晶圓蝕刻 2.7.1. 蝕刻種類 2.8. 奈米壓印 2.9. 自組裝單分子層 2.10. 共價鍵固定法(EDC/NHS reaction) 2.11. 重組蛋白與抗體 2.12. 聚苯乙烯粒子 2.12.1. 無乳化劑乳化聚合法 2.13. 三明治免疫分析法 3. 儀器原理 3.1. 桌上型氣壓機 3.2. 雷射切割機 3.3. X射線光電子能譜儀 (X-ray photoelectron spectroscopy,XPS) 3.4. 高解析度場發射掃描式電子顯微鏡 (Field-emission scanning electron microscope,FE-SEM) 3.5. 原子力顯微鏡(AtomicForceMicroscope, AFM) 3.6. 傅立葉轉換紅外線光譜儀 (Fourier-Transform Infrared Spectroscopy, FT-IR) 3.7. 陣列光束雷射分析儀 (BeamMic) 3.8. 電漿蝕刻機 (Plasma Machine) 3.8.1 電漿表面蝕刻 (plasma etching) 3.8.2. 電漿濺鍍 (plasma sputtering) 3.8.3. 電漿鍍膜 (plasma coating) 3.8.4. 電漿接枝 (plasma grafting) 3.9. 雷射共軛焦顯微鏡 (Confocal Laser Scanning Microscope,CLSM) 3.10. 動態光散射粒徑分析儀(Dynamic Light Scattering, DLS) 4. 實驗流程與方法 4.1. 實驗流程圖 4.2. 實驗藥品 4.3. 實驗儀器 4.4. 實驗步驟 4.4.1. 微影製程製備具有圖案化矽晶片 4.4.1.1. 清洗製程 4.4.1.2. 表面預處理 4.4.1.3. 光阻塗佈 4.4.1.4. 軟烤 4.4.1.5. 曝光 4.4.1.6. 顯影 4.4.1.7. 蝕刻 4.4.1.8. 圖案化矽晶片模具奈米壓印於DC薄膜 4.4.2. DC表面改質 4.4.2.1. DC表面親水處理 4.4.2.2. 製備自組裝層 4.4.2.3. 表面改質Protein G 4.4.2.4. 接枝鼠疫桿菌F1抗原之單一性單株抗體 (Anti-F1 MoAb) 4.4.2.5. Blocking BSA 抗沾黏層於試片表面 4.4.2.6. 微流道晶片製作 4.4.3. 聚苯乙烯奈米粒子之製備 4.4.3.1. 苯乙烯單體之抑制劑除去 4.4.3.2. 苯乙烯單體無乳化劑聚合法 4.4.4. Polystyrene表面改質 4.4.4.1. 表面改質Protein G 4.4.4.2. 接枝Rabbit anti-F1抗體 4.4.4.3. Blocking BSA 抗沾黏層覆蓋於Polystyrene表面 4.4.5.利用流體裝置及聚苯乙烯球放大偵測訊號 4.4.6. 螢光標定 5. 結果與討論 5.1. Diffraction chip (DC)之型態分析 5.1.1. 圖案化表面分析 5.1.1.1. 微影製程光阻圖案 5.1.1.2. 奈米壓印DC圖案化 5.1.2. 圖案化光學性質 5.1.2.1.可見光繞射 5.1.2.2.雷射繞射 5.1.3. DC製備各流程之影像型態分析 5.1.3.1. SEM表面型態分析 5.1.3.2. AFM表面型態分析 5.1.3.3. CLSM分析 5.1.4. DC製備各流程之定性分析 5.1.4.1. FT-IR光譜分析 5.1.4.2. XPS能譜圖分析 5.1.4.2.1. DC改質後之Wide Scan分析 5.2. PS之型態分析 5.2.1. PS製備各流程之影像型態分析 5.2.1.1. SEM表面型態分析 5.2.1.2. CLSM分析 5.2.2. PS製備各流程之定性分析 5.2.2.1. FT-IR光譜分析 5.2.2.2. XPS能譜圖分析 5.2.2.3. DLS粒徑分析 5.3. 偵測F1抗原之偵測極限分析 5.3.1. 以流體晶片偵測F1抗原雷射損失能量值 5.3.2. 以PBS配置不同濃度之F1抗原溶液作為檢測之標準品 5.3.3. 以血漿配置不同濃度之F1抗原溶液作為檢測之標準品 5.3.4. 以血漿配置不同濃度之F1抗原溶液作為檢測之標準品之影像型態分析 5.3.4.1 SEM表面型態分析 5.3.4.2. CLSM分析 5.3.5. 選擇比分析 5.3.5.1. 專一性分析 5.3.5.2. 干擾性分析 6.結論 參考文獻

    [1] Born F, Braun P, Scholz HC, Grass G: Specific Detection of Yersinia pestis Based on Receptor Binding Proteins of Phages. Pathogens 2020, 9(8):611.
    [2] Zasada AA, Formińska K, Zacharczuk K, Jacob D, Grunow R: Comparison of eleven commercially available rapid tests for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Letters in Applied Microbiology 2015, 60(5):409-413.
    [3] Bossi P, Tegnell A, Baka A, van Loock F, Werner A, Hendriks J, Maidhof H, Gouvras G: Bichat guidelines for the clinical management of plague and bioterrorism-related plague. Euro surveillance : bulletin Europeen sur les m(繞射階數)aladies transmissibles = European communicable disease bulletin 2004, 9(12):23-24.
    [4] Mollaret HH: Fifteen centuries of yersiniosis. Contr Microbiol Immunol 1995, 13:1-4.
    [5] Vogler AJ, Keim P, Wagner DM: A review of methods for subtyping Yersinia pestis: From phenotypes to whole genome sequencing. Infection,Genetics and Evolution 2016, 37:21-36.
    [6] Plague manual--epidemiology, distribution, surveillance and control.Releve epidemiologique hebdomadaire 1999, 74(51-52):447.
    [7] Gage KL, Kosoy MY: Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 2005, 50:505-528.
    [8] Mayboroda O, Gonzalez Benito A, Sabate del Rio J, Svobodova M,Julich S, Tomaso H, O'Sullivan CK, Katakis I: Isothermal solid-phase amplification system for detection of Yersinia pestis. Anal Bioanal Chem 2016, 408(3):671-676.
    [9] Zeng J-R, Cheng C-C, Lee A-W, Wei P-L, Chen J-K: Visualization platform of one-dimensional gratings of tethered polyvinyltetrazole brushes on silicon surfaces for sensing of Cr(III). Microchimica Acta 2017, 184(8):2723-2730.
    [10] Perry RD, Fetherston JD: Yersinia pestis--etiologic agent of plague. Clinical Microbiology Reviews 1997, 10(1):35-66.
    [11] Pohanka M, Skládal P: Bacillus anthracis, Francisella tularensis and Yersinia pestis. The most important bacterial warfare agents — review. Folia Microbiologica 2009, 54(4):263-272.
    [12] Vogler AJ, Chan F, Nottingham R, Andersen G, Drees K, Beckstrom-Sternberg SM, Wagner DM, Chanteau S, Keim P: A Decade of Plague in Mahajanga, Madagascar: Insights into the Global Maritime Spread of Pandemic Plague. mBio 2013, 4(1):e00623-00612.
    [13] Plague around the world, 2010–2015. Releve epidemiologique hebdomadaire 2016, 91(8):89-93.
    [14] Respicio-Kingry LB, Yockey BM, Acayo S, Kaggwa J, Apangu T, Kugeler KJ, Eisen RJ, Griffith KS, Mead PS, Schriefer ME et al: Two Distinct Yersinia pestis Populations Causing Plague among Humans in the West Nile Region of Uganda. PLOS Neglected Tropical Diseases 2016, 10(2):e0004360.
    [15] Shi L, Yang G, Zhang Z, Xia L, Liang Y, Tan H, He J, Xu J, Song Z, Li W et al: Reemergence of human plague in Yunnan, China in 2016. PLOS ONE 2018, 13(6):e0198067.
    [16] Abedi AA, Shako J-C, Gaudart J, Sudre B, Ilunga BK, Shamamba SKB, Diatta G, Davoust B, Tamfum J-JM, Piarroux R et al: Ecologic Features of Plague Outbreak Areas, Democratic Republic of the Congo, 2004-2014. Emerg Infect Dis 2018, 24(2):210-220.
    [17] Andrianaivoarimanana V, Piola P, Wagner DM, Rakotomanana F, Maheriniaina V, Andrianalimanana S, Chanteau S, Rahalison L, Ratsitorahina M, Rajerison M: Trends of Human Plague, Madagascar, 1998-2016. Emerg Infect Dis 2019, 25(2):220-228.
    [18] Randremanana R, Andrianaivoarimanana V, Nikolay B, Ramasindrazana B, Paireau J, ten Bosch QA, Rakotondramanga JM, Rahajandraibe S, Rahelinirina S, Rakotomanana F et al: Epidemiological characteristics of an urban plague epidemic in Madagascar, August–November, 2017: an outbreak report. The Lancet Infectious Diseases 2019, 19(5):537-545.
    [19] Gaval SR, Shrikhande SN, Makhija SK, Tankhiwale NS, Pathak AA, Saoji AM: Study of suspected plague cases for isolation and identification of Yersinia pestis. Indian J Med Sci 1996, 50(12):335-338.
    [20] Nunes MP, Suassuna I: Bacteriophage specificity in the identification of Yersinia pestis as compared with other enterobacteria. Rev Bras Pesqui Med Biol 1978, 11(6):359-363.
    [21] Sergueev KV, He Y, Borschel RH, Nikolich MP, Filippov AA: Rapid and Sensitive Detection of Yersinia pestis Using Amplification of Plague Diagnostic Bacteriophages Monitored by Real-Time PCR. PLOS ONE 2010, 5(6):e11337.
    [22] Chanteau S, Rahalison L, Ralafiarisoa L, Foulon J, Ratsitorahina M, Ratsifasoamanana L, Carniel E, Nato F: Development and testing of a rapid diagnostic test for bubonic and pneumonic plague. The Lancet 2003, 361(9353):211-216.
    [23] Chanteau S, Rahalison L, Ratsitorahina M, Mahafaly, Rasolomaharo M, Boisier P, O'Brien T, Aldrich J, Keleher A, Morgan C et al: Early diagnosis of bubonic plague using F1 antigen capture ELISA assay and rapid immunogold dipstick. International Journal of Medical Microbiology 2000, 290(3):279-283.
    [24] Splettstoesser WD, Rahalison L, Grunow R, Neubauer H, Chanteau S: Evaluation of a standardized F1 capsular antigen capture ELISA test kit for the rapid diagnosis of plague. FEMS Immunology & Medical Microbiology 2004, 41(2):149-155.
    [25] Hinnebusch J, Schwan TG: New method for plague surveillance using polymerase chain reaction to detect Yersinia pestis in fleas. Journal of Clinical Microbiology 1993, 31(6):1511-1514.
    [26] Tsukano H, Itoh K-I, Suzuki S, Watanabe H: Detection and Identification of Yersinia pestis by Polymerase Chain Reaction (PCR) Using Multiplex Primers. Microbiology and Immunology 1996, 40(10):773-775.
    [27] Iqbal SS, Chambers JP, Goode MT, Valdes JJ, Brubaker RR: Detection of Yersinia pestis by pesticin fluorogenic probe-coupled PCR. Molecular and Cellular Probes 2000, 14(2):109-114.
    [28] Skottman T, Piiparinen H, Hyytiäinen H, Myllys V, Skurnik M, Nikkari S: Simultaneous real-time PCR detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. European Journal of Clinical Microbiology & Infectious Diseases 2007, 26(3):207-211.
    [29] Qu S, Shi Q, Zhou L, Guo Z, Zhou D, Zhai J, Yang R: Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis. PLOS Neglected Tropical Diseases 2010, 4(3):e629.
    [30] Anderson GP, King KD, Cao LK, Jacoby M, Ligler FS, Ezzell J: Quantifying Serum Antiplague Antibody with a Fiber-Optic Biosensor. Clinical and Diagnostic Laboratory Immunology 1998, 5(5):609-612.
    [31] Wei H, Zhao Y, Bi Y, Liu H, Guo Z, Song Y, Zhai J, Huang H, Yang R: Direct detection of Yersinia pestis from the infected animal specimens by a fiber optic biosensor. Sensors and Actuators B: Chemical 2007, 123(1):204-210.
    [32] Yan Z, Zhou L, Zhao Y, Wang J, Huang L, Hu K, Liu H, Wang H, Guo Z, Song Y et al: Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sensors and Actuators B: Chemical 2006, 119(2):656-663.
    [33] Soergel ME, Schaffer FL, Blank HF: Solid-phase radioimmunoassay for detection of plague antigen in animal tissue. Journal of Clinical Microbiology 1982, 16(5):953-956.
    [34] Engelthaler DM, Gage KL, Montenieri JA, Chu M, Carter LG: PCR Detection of Yersinia pestis in Fleas: Comparison with Mouse Inoculation. Journal of Clinical Microbiology 1999, 37(6):1980-1984.
    [35] Campbell J, Lowe J, Walz S, Ezzell J: Rapid and specific identification of Yersinia pestis by using a nested polymerase chain reaction procedure. Journal of Clinical Microbiology 1993, 31(3):758-759.
    [36] MATERO P, PASANEN T, LAUKKANEN R, TISSARI P, TARKKA E, VAARA M, SKURNIK M: Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis. APMIS 2009, 117(1):34-44.
    [37] Loïez C, Herwegh S, Wallet F, Armand S, Guinet F, Courcol RJ: Detection of Yersinia pestis in sputum by real-time PCR. J Clin Microbiol 2003, 41(10):4873-4875.
    [38] Hsu H-L, Chuang C-C, Liang C-C, Chiao D-J, Wu H-L, Wu Y-P, Lin F-P, Shyu R-H: Rapid and sensitive detection of Yersinia pestis by lateral-flow assay in simulated clinical samples. BMC Infectious Diseases 2018, 18(1):402.
    [39] Amoako KK, Shields MJ, Goji N, Paquet C, Thomas MC, Janzen TW, Bin Kingombe CI, Kell AJ, Hahn KR: Rapid Detection and Identification of <i>Yersinia pestis</i> from Food Using Immunomagnetic Separation and Pyrosequencing. Journal of Pathogens 2012, 2012:781652.
    [40] Jeon J-W, Kim J-H, Lee J-M, Lee W-H, Lee D-Y, Paek S-H: Rapid immuno-analytical system physically integrated with lens-free CMOS image sensor for food-borne pathogens. Biosensors and Bioelectronics 2014, 52:384-390.
    [41] Lim DV, Simpson JM, Kearns EA, Kramer MF: Current and Developing Technologies for Monitoring Agents of Bioterrorism and Biowarfare. Clinical Microbiology Reviews 2005, 18(4):583-607.
    [42] Koczula Katarzyna M, Gallotta A: Lateral flow assays. Essays in Biochemistry 2016, 60(1):111-120.
    [43] Hadi Esmaeilsabzali, Timothy V. Beischlag, Michael E. Cox, Ash M. Parameswaran, Edward J. Park,Detection and isolation of circulating tumor cells: Principles and methods,Biotechnology Advances,Volume 31, Issue 7,2013,Pages 1063-1084,ISSN 0734-9750,
    [44] Lakshmipriya, T., Hashim, U., Gopinath, S.C.B. et al. Microfluidic-based biosensor: signal enhancement by gold nanoparticle. Microsyst Technol 22, 2389–2395 (2016). https://doi.org/10.1007/s00542-016-3074-1
    [45] amid SadAbadi, Simona Badilescu, Muthukumaran Packirisamy, Rolf Wüthrich,Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones,Biosensors and Bioelectronics,Volume 44,2013,Pages 77-84,ISSN 0956-5663
    [46] Sun W, Jia C, Huang T, Sheng W, Li G, Zhang H, et al. High-Performance Size-Based Microdevice for the Detection Of Circulating Tumor Cells from Peripheral Blood in Rectal Cancer Patients. PloS one 2013;8:e75865.
    [47] Lianidou ES, Markou A. Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clinical chemistry 2011;57:1242-55
    [48] Hasan Ilhan, Burcu Guven, Uzeyir Dogan, Hilal Torul, Sefika Evran, Demet Çetin, Zekiye Suludere, Necdet Saglam, İsmail Hakki Boyaci, Ugur Tamer,The coupling of immunomagnetic enrichment of bacteria with paper-based platform,Talanta,Volume 201,2019,Pages 245-252,ISSN 0039-9140,
    [49] O. Osman, S. Toru, F. Dumas-Bouchiat, N. M. Dempsey, N. Haddour, L.-F. Zanini, F. Buret, G. Reyne, and M. Frénéa-Robin , "Microfluidic immunomagnetic cell separation using integrated permanent micromagnets", Biomicrofluidics 7, 054115 (2013)
    [50] Lee J., Lee M, "Improved light harvest in diffraction grating-embedded TiO2 nanoparticle film," Appl. Phys. A, 2017, 123:737.
    [51] Chang C.-L., Acharya,G., Savran C. A, "In situ assembled diffraction grating for biomolecular detection," Appl. Phys. Lett, 2007, 90:233901.
    [52] Miquel Avella-Oliver, Vicente Ferrando, Juan A. Monsoriu, Rosa Puchades, Angel Maquieira, "A label-free diffraction-based sensing displacement immunosensor to quantify low molecular weight organic compounds," Analytica Chimica Acta, 2018, 173-179.
    [53] Ghanashyam Acharya, Chun-Li Chang, and Cagri Savran, "An Optical Biosensor for Rapid and Label-Free Detection of Cells," Journal of the American Chemical Society, 2006, 128 (12).
    [54] Ghanashyam Acharya, Chun-Li Chang, Derek D. Doorneweerd, Erina Vlashi, Walter A. Henne, Lynn C Hartmann, et al, "Immunomagnetic Diffractometry for Detection of Diagnostic Serum Markers," Journal of the American Chemical Society, 2007, 129 (51).
    [55] Abbasi, Roozbeh, et al. "Photolithography–enabled direct patterning of liquid metals." Journal of Materials Chemistry C 8.23 (2020): 7805-7811.
    [56] Carbonell, Carlos, et al. "Polymer brush hypersurface photolithography." Nature communications 11.1 (2020): 1-8.
    [57] B. -. Jo, L. M. Van Lerberghe, K. M. Motsegood and D. J. Beebe, "Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer," in Journal of Microelectromechanical Systems, vol. 9, no. 1, pp. 76-81, March 2000, doi: 10.1109/84.825780.
    [58] J. Xu, et al. "Room-temperature imprinting method for plastic microchannel fabrication". Analytical Chemistry. vol.72, pp. 1930-1933, 2000.
    [59] Yang, Yong Mo, et al. "Silicon Trench Etch Uniformity Improvement for Microloading and Macro-to-Macro Loading for sub-14nmNode." 2018 IEEE International Interconnect Technology Conference (IITC). IEEE, 2018.
    [60] Xu, Pengkai, et al. "Impact of Rework Process to ETCH Bias and the Corresponding Solution." 2020 China Semiconductor Technology International Conference (CSTIC). IEEE, 2020.
    [61] Sokolovskii, Grigorii S., et al. "3D laser nano-printing on fibre paves the way for super-focusing of multimode laser radiation." Scientific Reports 8.1 (2018): 1-9.
    [62] Cheng, Huachao, et al. "Femtosecond laser plasmonic nano-printing metasurfaces for multiple-dimensional manipulation of light fields." Optics Letters 47.9 (2022): 2290-2293.
    [63] Jinfeng Zhu, Zhengying Wang, Shaowei Lin, Shan Jiang, Xueying Liu, Shengshi Guo,Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker,Biosensors and Bioelectronics,Volume 150,2020,111905,ISSN 0956-5663,
    [64] izgar Jiawook, Babak Heidari,Chapter 6 - Nanoimprint lithography and transdermal drug-delivery devices,Editor(s): Ahmed Barhoum, Abdel Salam Hamdy Makhlouf,In Micro and Nano Technologies,Emerging Applications of Nanoparticles and Architecture Nanostructures,Elsevier,2018,Pages 141-175,ISBN 9780323512541,
    [65] Tatsuro Endo, Satoshi Ozawa, Norimichi Okuda, Yasuko Yanagida, Satoru Tanaka, Takeshi Hatsuzawa,Reflectometric detection of influenza virus in human saliva using nanoimprint lithography-based flexible two-dimensional photonic crystal biosensor,Sensors and Actuators B: Chemical,Volume 148, Issue 1,2010,Pages 269-276,ISSN 0925-4005,
    [66] W.C. Bigelow, D.L. Pickett, W.A. Zisman, "Film adsorbed from solotion in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946
    [67] R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society, vol. 105, pp. 4481-4483, 1983.
    [68] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold," Journal of the American Chemical Society, vol. 113, pp. 7152-7167, 1991.
    [69] D. G. a. S. M. Husson, "Room Temperature Growth of Surface-Confined Poly(acrylamide) from Self-Assembled Monolayers Using Atom Transfer Radical Polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002
    [70] B. M. E. Delamarche, H. Kang, and Ch. Gerber, "Thermal Stability of Self-Assembled Monolayers," Langmuir, vol. 10, pp. 4103-4108, 1994
    [71] J. A. H. a. J. P. Youngblood, "Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane," Langmuir, vol. 22, pp. 11142-11147, 2006.
    [72] SIMON, A., et al. Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface. Journal of colloid and interface science, 2002, 251.2: 278-283.
    [73] G. T. Hermanson, Bioconjugate techniques. Academic press, 2013.
    [74] Adam Hughes,’’Biosensing on the End of an Optical Fiber’’,publish June 2015
    [75] Yili Zhao , Zhangyu Fan , Mingwu Shen , and Xiangyang Shi, ‘’Hyaluronic Acid-Functionalized Electrospun Polyvinyl Alcohol/Polyethyleneimine Nanofi bers for Cancer Cell Capture Applications’’,ADVANCE MATERIAL,2015
    [76] Akerström B, Brodin T, Reis K, Björck L, "Protein G: a powerful tool for binding and detection of monoclonal and polyclonal antibodies," J Immunol, 1985, 135(4):2589-92.
    [77] Asta Makaraviciute, Almira Ramanaviciene, "Site-directed antibody immobilization techniques for immunosensors," Biosensors and Bioelectronics, 2013, 460-471.
    [78] Welch NG, Scoble JA, Muir BW, Pigram PJ, "Orientation and characterization of immobilized antibodies for improved immunoassays (Review)," Biointerphases, 2017, 12(2):02D301.
    [79] Ge, J., et al., Drug Release from Electric-Field-Responsive Nanoparticles. ACS Nano, 2012. 6(1): p. 227-233.
    [80] Li, Y., T. Kunitake, and S. Fujikawa, Efficient Fabrication of Large, Robust Films of 3D-ordered Polystyrene Latex. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006. 275: p. 209-217.
    [81] Fu, Y., et al., Self-assembly of Polystyrene Sphere Colloidal Crystals by in Situ Solvent Evaporation Method. Synthetic Metals, 2009. 159: p. 1744-1750.
    [82] Kumoda, M., Y. Takeoka, and M. Watanabe, Template Synthesis of Poly(N-isopropylacrylamide) Minigels Using Interconnecting Macroporous Polystyrene. Langmuir, 2003. 19: p. 525-528.
    [83] Goodwin, J.W., et al., Colloid. Polym. Sci., 1974.
    [84] Goodall, A.R., M.C. Wilkinson, and J. Hearn, J. Polym. Sci., Part A: Polym. Chem, 1977. 15.
    [85] Cox, R.A., et al., J. Polym. Sci.,Part A: Polym. Chem, 1977.
    [86] Potluri, P.R., Rajendran, V.K., Tran, C.T. et al. Linker-protein G mediated functionalization of polystyrene-encapsulated upconversion nanoparticles for rapid gene assay using convective PCR. Microchim Acta 186, 346 (2019).

    無法下載圖示 全文公開日期 2024/09/06 (校內網路)
    全文公開日期 2024/09/06 (校外網路)
    全文公開日期 2024/09/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE