簡易檢索 / 詳目顯示

研究生: 洪明裕
Ming-Yu Hung
論文名稱: 中空聚多巴胺奈米粒子的製備與藥物裝填於細胞內電場釋放之研究
Preparation of hollow polydopamine nanoparticles loading drugs for in vitro drug release under alternating electric field
指導教授: 陳建光
Jem-Kun Chen
口試委員: 陳建光
Jem-Kun Chen
鄭智嘉
Chih-Chia Cheng
蔡協致
Hsieh-Chih Tsai
李愛薇
Ai-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 153
中文關鍵詞: 聚多巴胺聚苯乙烯中空粒子生物相容性高分子藥物載體電場響應藥物釋放
外文關鍵詞: polydopamine, polystyrene, hollow particle, non-toxic polymer, drug carrier, electric field responsive nanoparticle
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為設計一具電場響應之生物相容性藥物載體模型,透過交流感應電場誘導帶電奈米粒子之電泳行為,進而加速藥物之釋放。聚多巴胺中空粒子是透過將多巴胺溶液自發氧化聚合到聚苯乙烯粒子模板上,接著透過反應時間的不同來得到不同厚度的聚多巴胺殼層,最後利用THF蝕刻聚苯乙烯內核得到聚多巴胺中空粒子。聚苯乙烯粒子則是透過無乳化劑聚合得到均一粒徑的粒子,再透過苯乙烯單體濃度的改變可以得到不同大小的聚苯乙烯粒子。由TEM影像圖中可以發現粒子呈現中空的形貌。利用DLS探討不同參數下的粒徑可以推算出中空粒子的厚度約為19、48與71奈米。最後分別利用親水性藥劑羅丹明B (Rhodamine B, RhB)與疏水性藥劑尼羅紅(Nile Red)對聚多巴胺中空粒子進行標記,由UV-Vis測量可得RhB和Nile Red在0.5mg/ml的藥物濃度下皆於厚度最小19nm的奈米粒子有最大的藥物裝載率,皆有大於95%藥物裝載率,並在一個月後僅有5%以內的藥物損失量。厚度19nm之聚多巴胺中空粒子在交流電場下可以得到最高的藥物釋放率,而相較於無使用電場能夠促進藥物釋放近30%。
    將聚多巴胺中空粒子與RAW264.7小鼠巨噬細胞共培養,藉由MTT與CCK-8相互佐證下證明多巴胺中空粒子對於細胞是無毒性的。藉由CLSM觀察細胞攝取載體之螢光影像,再藉由施加交流電場觀察細胞中藥物釋放的效果。
    本篇研究成功製備出具有電場響應之藥物載體模型,能透過交流電場誘導改變聚多巴胺中空粒子與藥物相互作用加速藥物釋放。電場響應藥物運送系統能夠於特定的部位和時間釋放,未來於藥物運送系統具有相當之潛力。


    In this study, we prepared a biocompatible drug carrier model with electric-field response system. To achieve on demand drug release via electric field. Polydopamine hollow nanoparticles (PDA h-NPs) were synthesized by the spontaneous oxidative polymerization of dopamine solution onto polystyrene nanoparticles (PS NPs) template, followed by removal of the template. Different wall thickness can be controlled from different reaction time of dopamine polymerization. PS NPs were prepared by emulsifier-free emulsion polymerization, different particles size can be controlled from different styrene concentration. The wall thickness of PDA h-NPs can be simply controlled from 19 to 71 nm, depending on dopamine polymerization time. Moreover, high loading efficiency 96.1% and 97.8% of RhB and Nile Red for 19nm thickness PDA h-NPs. The PDA h-NPs maintained relatively high stability that only loss 9% drug amounts in one month. Furthermore, the release rate of hollow particle with thickness 19 nm can reach 32.3% under electric field in 60 minutes.
    The PDA h-NPs were co-cultured with RAW264.7 cell. We used MTT assay and CCK-8 to confirm that PDA h-NPs were non-toxic polymer. We observed the cellular uptake and the effect of drug release under the electric-field from CLSM image.
    In these results, applying polydopamine hollow particle in electric-field drug delivery represent an effective method for attaining spatiotemporal control of drug release at the desired site.

    摘要 i Abstract iii 致謝 v 目錄 ix 圖目錄 xv 表目錄 xx 第1章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 3 第2章 理論與文獻回顧 5 2.1 奈米載體應用於疫苗載體研究 5 2.2 刺激性響應(Stimuli-Responsive)藥物釋放 6 2.2.1 溫度響應系統(Thermoresponsive Systems) 6 2.2.2 磁感應系統(Magnetically Responsive Systems) 8 2.2.3 超音波觸發之藥物遞送(Ultrasound-Triggered Drug Delivery) 9 2.2.4 光觸發藥物遞送(Light-Triggered Drug Delivery) 10 2.2.5 電響應系統(Electroresponsive Systems) 11 2.3 聚苯乙烯奈米粒子 13 2.3.1 乳化劑乳化聚合法 13 2.3.2 無乳化劑乳化聚合 16 2.3.3 分散聚合法 19 2.3.4 懸浮聚合法 19 2.4 聚多巴胺(Polydopamine)簡介與應用 20 2.4.1 聚多巴胺奈米粒子 22 2.5 芳香雜環藥物 23 2.5.1 Doxorubicin (DOX) 24 2.5.2 Camptothecin (CPT) 24 2.6 π-π堆積相互作用(π-π Stacking Interaction) 25 2.7 交流電場誘導藥物釋放原理 27 2.7.1 電場 27 2.7.2 電泳理論 28 第3章 儀器原理 29 3.1 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer, FT-IR) 29 3.2 X射線光電子能譜儀(X-Ray Photoelectron Spectroscope, XPS) 34 3.3 可見光紫外光分光光譜儀(Ultraviolet-Visible Spectroscopy, UV-vis) 36 3.4 X光繞射分析儀(X-ray diffractometer, XRD) 39 3.5 熱重量分析儀(Thermogravimetric Analysis, TGA) 42 3.6 動態光散射粒徑分析儀(Dynamic Light Scattering, DLS) 44 3.7 表面電位分析儀(Zeta-Potential) 45 3.8 高解析度場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM) 47 3.9 場發射穿透式電子顯微鏡(Field-Emission Transmission Electron Microscope, FE-TEM) 50 3.10 雷射掃描式共軛焦顯微鏡(Confocal Laser Scanning Microscope, CLSM) 54 3.11 連續波長微量盤分光光譜儀(Elisa Reader) 56 3.12 螢光分光光譜儀 58 第4章 實驗流程與方法 61 4.1 實驗流程圖 61 4.2 實驗藥品 63 4.3 實驗儀器 69 4.4 實驗步驟 72 4.4.1 聚苯乙烯奈米粒子(PSNPs)之製備 72 4.4.2 聚多巴胺-聚苯乙烯核殼奈米粒子之製備 74 4.4.3 聚多巴胺中空奈米粒子之製備 75 4.4.4 聚多巴胺中空奈米粒子裝載螢光染料 76 4.4.5 PDA h-NPs / Fluorescent Dye載體穩定性測試 77 4.4.6 電場誘導聚多巴胺中空奈米粒子之藥物釋放 78 4.4.7 RAW264.7細胞培養 79 4.4.8 生物體外實驗 81 第5章 結果與討論 87 5.1 PDA中空粒子定性分析 87 5.1.1 FT-IR光譜分析 87 5.1.2 XPS光譜分析 89 5.1.3 XRD結晶分析 90 5.1.4 TGA熱重分析 91 5.1.5 DLS粒徑分析 92 5.1.6 Zeta-potential 表面電位分析 94 5.2 PDA h-NPs影像型態分析 97 5.2.1 SEM表面型態分析 97 5.2.2 TEM穿透型態分析 102 5.2.3 光學顯微鏡表面分析 104 5.2.4 PDA/Nile Red之CLSM 105 5.2.5 PDA/Nile Red 螢光光譜分析 106 5.3 螢光染料裝載率之定量分析 108 5.3.1 親水螢光染料Rhodamine B裝載率之定量分析 108 5.3.2 疏水螢光染料Nile red裝載率之定量分析 111 5.3.3 PDA h-NPs / Fluorescent Dye載體穩定性測試 113 5.4 交流電場誘導藥物釋放之分析 114 5.5 生物體外實驗 116 5.5.1 細胞毒性測試 116 5.5.2 RAW264.7細胞攝取PDA-h NPs/fluorescent drug藥載實驗 118 5.5.3 電場誘導RAW264.7細胞內藥物釋放之實驗 123 第6章 結論 127 參考文獻 129

    1. Zhao, L., et al., Nanoparticle vaccines. Vaccine, 2014. 32(3): p. 327-37.
    2. Chen, G., et al., Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem Rev, 2016. 116(5): p. 2826-85.
    3. Mura, S., J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 2013. 12(11): p. 991-1003.
    4. Sharma, R., et al., Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities. Biotechnol Adv, 2015. 33(1): p. 64-79.
    5. Hossen, S., et al., Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res, 2019. 15: p. 1-18.
    6. Vigderman, L. and E.R. Zubarev, Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev, 2013. 65(5): p. 663-76.
    7. Wang, Y., et al., Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev, 2017. 110-111: p. 112-126.
    8. Johnson, E.R., et al., Revealing Noncovalent Interactions. Journal of the American Chemical Society, 2010. 132(18): p. 6498-6506.
    9. Lee, J.H., et al., Ion-beam-induced surface modification of solution-derived indium-doped zinc oxide film for a liquid crystal device with stable and fast switching properties. Optical Materials, 2018. 84: p. 209-214.
    10. Yang, X., et al., High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. The Journal of Physical Chemistry C, 2008. 112(45): p. 17554-17558.
    11. Liang, Y., et al., Terminal modification of polymeric micelles with pi-conjugated moieties for efficient anticancer drug delivery. Biomaterials, 2015. 71: p. 1-10.
    12. Zeng, J.-Y., et al., π-Extended Benzoporphyrin-Based Metal–Organic Framework for Inhibition of Tumor Metastasis. ACS Nano, 2018. 12(5): p. 4630-4640.
    13. Fung, S.-Y., et al., Amino Acid Pairing for De Novo Design of Self-Assembling Peptides and Their Drug Delivery Potential. Advanced Functional Materials, 2011. 21(13): p. 2456-2464.
    14. Li, F., et al., Engineering the Aromaticity of Cationic Helical Polypeptides toward “Self-Activated” DNA/siRNA Delivery. ACS Applied Materials & Interfaces, 2017. 9(28): p. 23586-23601.
    15. Zhang, A., et al., Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Progress in Polymer Science, 2019. 99: p. 101164.
    16. Ge, J., et al., Drug Release from Electric-Field-Responsive Nanoparticles. ACS Nano, 2012. 6(1): p. 227-233.
    17. Zhong, X., et al., Polydopamine as a Biocompatible Multifunctional Nanocarrier for Combined Radioisotope Therapy and Chemotherapy of Cancer. Advanced Functional Materials, 2015. 25(47): p. 7327-7336.
    18. Liu, Q., et al., Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromol Biosci, 2011. 11(9): p. 1227-34.
    19. Chuang, C.C., et al., A fucoidan-quaternary chitosan nanoparticle adjuvant for anthrax vaccine as an alternative to CpG oligodeoxynucleotides. Carbohydr Polym, 2020. 229: p. 115403.
    20. Al-Ahmady, Z.S., et al., Lipid–Peptide Vesicle Nanoscale Hybrids for Triggered Drug Release by Mild Hyperthermia in Vitro and in Vivo. ACS Nano, 2012. 6(10): p. 9335-9346.
    21. Chen, K.-J., et al., A Thermoresponsive Bubble-Generating Liposomal System for Triggering Localized Extracellular Drug Delivery. ACS Nano, 2013. 7(1): p. 438-446.
    22. Thomas, C.R., et al., Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticles. Journal of the American Chemical Society, 2010. 132(31): p. 10623-10625.
    23. Ruiz-Hernández, E., A. Baeza, and M. Vallet-Regí, Smart Drug Delivery through DNA/Magnetic Nanoparticle Gates. ACS Nano, 2011. 5(2): p. 1259-1266.
    24. Schroeder, A., et al., Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release, 2009. 137(1): p. 63-8.
    25. Kheirolomoom, A., et al., Copper-doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity. Mol Pharm, 2010. 7(6): p. 1948-58.
    26. Rapoport, N.Y., et al., Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release, 2009. 138(3): p. 268-76.
    27. Schroeder, A., et al., Remotely activated protein-producing nanoparticles. Nano Lett, 2012. 12(6): p. 2685-9.
    28. Xiao, Z., et al., DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew Chem Int Ed Engl, 2012. 51(47): p. 11853-7.
    29. Yan, Q., et al., Voltage-Responsive Vesicles Based on Orthogonal Assembly of Two Homopolymers. Journal of the American Chemical Society, 2010. 132(27): p. 9268-9270.
    30. Fitch, R.M., M.B. Prenosil, and K.J. Sprick. The mechanism of particle formation in polymer hydrosols. I. kinetics of aqueous polymerization of methyl methacrylate. in Journal of Polymer Science Part C: Polymer Symposia. 1969. Wiley Online Library.
    31. Harkins, W.D., A General Theory of the Mechanism of Emulsion Polymerization1. Journal of the American Chemical Society, 1947. 69(6): p. 1428-1444.
    32. Li, Y., T. Kunitake, and S. Fujikawa, Efficient Fabrication of Large, Robust Films of 3D-ordered Polystyrene Latex. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006. 275: p. 209-217.
    33. Fu, Y., et al., Self-assembly of Polystyrene Sphere Colloidal Crystals by in Situ Solvent Evaporation Method. Synthetic Metals, 2009. 159: p. 1744-1750.
    34. Kumoda, M., Y. Takeoka, and M. Watanabe, Template Synthesis of Poly(N-isopropylacrylamide) Minigels Using Interconnecting Macroporous Polystyrene. Langmuir, 2003. 19: p. 525-528.
    35. Goodwin, J.W., et al., Colloid. Polym. Sci., 1974.
    36. Goodall, A.R., M.C. Wilkinson, and J. Hearn, J. Polym. Sci., Part A: Polym. Chem, 1977. 15.
    37. Cox, R.A., et al., J. Polym. Sci.,Part A: Polym. Chem, 1977.
    38. Qi, H., W. Hao, and H. Xu, Synthesis of Large-sized Monodisperse Polystyrene Microspheres by Dispersion Polymerization with Dropwise Monomer Feeding Procedure. Colloid. Polym. Sci., 2009. 287: p. 243-248.
    39. Levite, M., Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf), 2016. 216(1): p. 42-89.
    40. Cao, X. and A. Aballay, Neural Inhibition of Dopaminergic Signaling Enhances Immunity in a Cell-Non-autonomous Manner. Curr Biol, 2016. 26(17): p. 2329-34.
    41. Beaulieu, J.M. and R.R. Gainetdinov, The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev, 2011. 63(1): p. 182-217.
    42. Simon, J.D. and D.N. Peles, The Red and the Black. Accounts of Chemical Research, 2010. 43(11): p. 1452-1460.
    43. Wang, K. and Y. Luo, Defined Surface Immobilization of Glycosaminoglycan Molecules for Probing and Modulation of Cell–Material Interactions. Biomacromolecules, 2013. 14(7): p. 2373-2382.
    44. Liu, Y., K. Ai, and L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev, 2014. 114(9): p. 5057-115.
    45. Zhang, X., et al., Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale, 2012. 4(18): p. 5581-4.
    46. Miao, Z.H., et al., Intrinsically Mn2+-Chelated Polydopamine Nanoparticles for Simultaneous Magnetic Resonance Imaging and Photothermal Ablation of Cancer Cells. ACS Appl Mater Interfaces, 2015. 7(31): p. 16946-52.
    47. Zhuang, W.-R., et al., Applications of π-π stacking interactions in the design of drug-delivery systems. Journal of Controlled Release, 2019. 294: p. 311-326.

    無法下載圖示 全文公開日期 2025/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE