簡易檢索 / 詳目顯示

研究生: 王郁翔
Yu-Hsiang Wang
論文名稱: 核/殼結構複合微米粒子於電/磁流變系統顯示媒介之應用
Electro/Magnetorheological Operation of Core/Shell Composite Microspheres for Display Media
指導教授: 陳建光
Jem-kun Chen
口試委員: 邱顯堂
Hsien-tang Chiu
陳志堅
Jyh-chien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 180
中文關鍵詞: 電流變磁流變粒子串核殼結構聚苯乙烯超順磁性石墨烯
外文關鍵詞: Electrorheological, Magnetorheological, Particle chain, Core-shell, Polystyrene, Superparamagnetism, Graphene
相關次數: 點閱:208下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗分為兩部份,第一部分使用無乳化劑乳化聚合法合成出粒徑約為2μm之聚苯乙烯(Polystyrene,PS)微米粒子作為基材,並經由SQUID驗證本實驗以共沉澱法所製備出之四氧化三鐵(Fe3O4)奈米粒子具有超順磁性,且其飽和磁化量為68.1emu/g;接著以由低到高濃度的Fe3O4包覆於PS表面,提升其磁響應力,命名為PF1、PF2、PF3、PF4及PF5,由TGA分析PF5中Fe3O4的含量最高可達27.36 wt%。利用直流(DC)及交流(AC)磁場驅動PF1、PF2、PF3、PF4及PF5;另外,使用交流電場驅動PG1、PG2、PG3;誘導磁/電偶極矩的改變,產生磁/電場極化現象,使粒子彼此吸引而排列成串,造成穿透率的變化,進而呈現出不同的顯示效果。以光學顯微鏡(OM)證實粒子驅動成串的行為,並使用光譜儀量化穿透率的變化值,在低電壓(5Voltage)及低電流(2.5Ampere)的情況下驅動粒子成串;PF1的穿透率從施加磁場前的7%上升至16.8%、PF5的穿透率則可提升至39%;在交流磁場驅動試驗中,同樣可於低電壓(5Voltage)及低頻率(100Hz)下,使粒子產生磁極化進而吸引成粒子串,造成穿透率的上升,其中PF5的穿透率則可上升至42.36%,由此現象可以發現在交流磁場的變動下,可以減少直流磁場中可能導致粒子聚積於某一電極的現象,使穿透率略為上升。由此可製備出磁控顯示元件。
    第二部份為將石墨片經由化學剝離法、表面改質及化學還原法等步驟,製備出正負兩種不同電性的還原氧化石墨烯(rGO-NH3+、rGO-COO-),並逐層包覆於PS表面,藉以增加其電性響應力,即為PG1、PG2及PG3,同樣地以TGA分析PG3中rGO的含量最高可達29.75wt%。以光學顯微鏡(OM)證實粒子驅動成串的行為,並使用光譜儀量化穿透率的變化值,在交流電場的試驗中,PS介電粒子可於低電壓(5V)及低頻率(300Hz)下極化成串,且可藉由PS與石墨烯兩種複合材料的組成,使粒子得以在更短時間(5 seconds)及更低頻率(100Hz)時產生界面極化,並增強其極化程度,提高穿透率(PG3=64.8%),進而達成不同的顯示效果,及其相關的顯示技術之應用。並可因此發現graphene與PS間介電常數及介電損耗值的差異性。


    We used mulsifier-free emulsion polymerization to prepare 2μm polystyrene microspheres as a substrate. Sequentially, Fe3O4 nanoparticles possessing superparamagnetism with 68.1emu/g of saturation magnetization were immobilizes on the PS microspheres to operate magnetorheologically for display medium. The layer thicknesses of immobilized Fe3O4 nanoparticles on the surface of polystyrene were increased gradually to enhance the magnetic performance, denoted as PF1, PF2, PF3, PF4 and PF5. The contents of PF5 reached to 27.36 wt%, maximum Fe3O4 contents on the surface. We applied direct current and alternating current magnetic field to drive PF1, PF2, PF3, PF4 and PF5 in aqueous solutions into microspheres chains. We observed microspheres stringing behavior by optical microscope and spectrometer. Microsphere stringing behavior appeared along the magnetic field generated by DC (2.5A) at 5V. The top-view transmittance for PF1 and PF5 is increase from 7% to 16.8% and 39%, respectively. The microspheres stringing behavior also appeared along magnetic field generated by AC with 100Hz of frequency at 5V. The top-view transmittance for PF5 reached to 42.36% under this condition without precipitation.
    In addition, two kinds of graphene oxide,(rGO-NH3+,rGO-COO-) were synthesized to immobilize on the surface of polystyrene by electrostastic force to improve the dielectric properties. Three various layer thicknesses of immobilized (rGO-NH3+/rGO-COO-) sheets on the surface of polystyrene from low to high were synthesized, denoted as PG1, PG2 and PG3. The contents of graphene for PG3 reached to 29.75 wt%. In the AC electric field experiment, polystyrene microspheres without graphene modification could form particle chain along the alternating electric field at 5V and 300Hz. Nevertheless, the polystyrene microspheres with graphene modification could be strung linearly at lower frequency (100Hz). In addition, response times (5s), polarizability and transmittance (PG3=64.8%) were also improved simultaneously.

    目錄 摘要 I Abstract III 致謝 V 目錄 VII 表目錄 XII 圖目錄 XIII 第1章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 2 第2章 理論與文獻回顧 3 2.1 電子紙 3 2.1.1 簡介 3 2.1.2 電子紙顯示技術及原理 4 2.2 極化理論 6 2.2.1 電場極化 6 2.2.2 磁場極化 17 2.3 粒子串 26 2.4 聚苯乙烯微球 31 2.4.1 乳化聚合法 31 2.4.2 無乳化劑乳化聚合法 34 2.4.3 分散聚合法 37 2.4.4 懸浮聚合法 37 2.5 超順磁性氧化鐵 38 2.5.1 共沉澱法(co-precipitation)[41] 39 2.5.2 微乳化法(micro-emulsions)[42] 39 2.5.3 水熱法(solvothermal reaction)[43] 39 2.6 石墨烯 40 2.6.1 石墨烯的結構與特性 40 2.6.2 石墨烯的製備 41 2.6.3 石墨烯的相關應用 44 第3章 儀器原理 45 3.1 高解析度場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, FE-SEM) 45 3.2 超導量子干涉磁量儀(SQUID) 46 3.3 X射線光電子能譜儀(XPS) 50 3.4 拉曼光譜儀(Raman) 51 3.5 表面電位分析儀(Zeta-potential) 55 第4章 實驗流程與方法 57 4.1 實驗流程圖 57 4.2 實驗藥品 58 4.3 實驗儀器 60 4.4 實驗步驟 63 4.4.1 聚苯乙烯微球之合成 63 4.4.2 Fe3O4奈米粒子之製備 64 4.4.3 PS@Fe3O4粒子之製備 65 4.4.4 氧化石墨烯(GO-COOH)之製備 66 4.4.5 氨基修飾氧化石墨烯(GO-NH2)之製備 67 4.4.6 還原氧化石墨烯(rGO-COOH)之製備 68 4.4.7 還原氨基修飾氧化石墨烯(rGO-NH2)之製備 69 4.4.8 PS@(rGO-NH3+/rGO-COO-)逐層組裝之製備 69 4.4.9 PS@Fe3O4粒子極化成串之實驗 71 4.4.10 PS@rGO粒子極化成串之實驗 73 第5章 結果與討論 76 5.1 PS@Fe3O4核殼結構微米粒子化性分析 76 5.1.1 FT-IR光譜分析 77 5.1.2 XRD結晶分析 78 5.1.3 SQUID磁性分析 80 5.1.4 TGA熱重分析 82 5.1.5 表面電位分析 85 5.2 PS@Fe3O4核殼結構微米粒子型態分析 87 5.2.1 SEM表面型態分析 87 5.2.2 TEM型態分析 92 5.3 PS@rGO 核殼結構微米粒子化性分析 96 5.3.1 FT-IR光譜分析 97 5.3.2 XRD結晶分析 100 5.3.3 XPS能譜分析 101 5.3.4 Raman光譜分析 105 5.3.5 TGA熱重分析 107 5.3.6 Zeta表面電位分析 109 5.4 PS@(rGO-NH3+/rGO-COO-)核殼結構微米粒子型態分析 111 5.4.1 SEM表面形態分析 111 5.4.2 TEM型態分析 117 5.5 PS@Fe3O4與PS@rGO核殼結構磁性微米粒子於成串試驗 120 5.5.1 PS@Fe3O4粒子成串顯示分析 120 5.5.2 PS@Fe3O4粒子成串顯示型態 129 5.5.3 PS@Fe3O4粒子成串顯示實品 131 5.5.4 PS@rGO粒子成串顯示分析 134 5.5.5 PS@rGO粒子成串顯示型態 143 5.5.6 PS@rGO粒子成串顯示實品 147 第6章 結論 149 參考文獻 150 授權書 158

    [1] T. Schneider, F. Nicholson, A. Khan, J.W. Doane, L.C. Chien, Flexible Encapsulated Cholesteric LCDs by Polymerization Induced Phase Separation, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2005, pp. 1568-1571.
    [2] A. Masutani, T. Roberts, B. Schuller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, A. Sakaigawa, Nanoparticle Embedded Polymer Dispersed Liquid Crystal for Wide Viewing Angle and Specular Glare Suppression, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2007, pp. 1355-1357.
    [3] Y. Itoh, K. Minoura, Y. Asaoka, I. Ihara, E. Satoh, S. Fujiwara, Super Reflective Color LCD with PDLC Technology, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2007, pp. 1362-1365.
    [4] M. Howard, E. Richley, R. Sprague, N. Sheridon, Gyricon electric paper, Journal of the Society for Information Display, 6 (1998) 215-217.
    [5] J.M. Crowley, N.K. Sheridon, L. Romano, Dipole moments of gyricon balls, Journal of electrostatics, 55 (2002) 247-259.
    [6] R. Sakurai, S. Ohno, S.i. Kita, Y. Masuda, R. Hattori, Color and Flexible Electronic Paper Display using QR‐LPDR Technology, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2006, pp. 1922-1925.
    [7] http://es.wikipedia.org/wiki/Gyricon.
    [8] http://www.bridgestone.com/.
    [9] http://www.einkgroup.com/.
    [10] R. Tao, J. Sun, Three-dimensional structure of induced electrorheological solid, Physical review letters, 67 (1991) 398.
    [11] K. Lu, W. Wen, C. Li, S. Xie, Frequency dependence of electrorheological fluids in an ac electric field, Physical Review E, 52 (1995) 6329.
    [12] H. Morgan, N.G. Green, AC electrokinetics: colloids and nanoparticles, Research Studies Press, 2003.
    [13] C.A. Harper, Handbook of materials for product design, McGraw-Hill New York, NY, 2001.
    [14] P. Maheshwari, Electronic Components and Processes, New Age International, 2006.
    [15] U. Bottger, Dielectric properties of polar oxides, Polar oxides: properties, characterization and imaging, (2005).
    [16] H. Pohl, Dielectrophoresis. 1978, Cambridge: Cambridge.
    [17] K. Yamamoto, S. Akita, Y. Nakayama, Orientation and purification of carbon nanotubes using ac electrophoresis, Journal of physics D: Applied physics, 31 (1998) L34-L36.
    [18] J.M. Sung, Dielectrophoresis and Optoelectronic Tweezers for Nanomanipulation.
    [19] O.F. Mossotti, Discussione analitica sull'influenza che l'azione di un mezzo dielettrico ha sulla distribuzione dell'elettricita alla superficie di piu corpi elettrici disseminati in esso, 1846.
    [20] R. Clausius, Abhandlungen uber die mechanische Warmetheorie, F. Vieweg, 1864.
    [21] C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, S.-K. Fan, Liquid lenses and driving mechanisms: A review, Journal of Adhesion Science and Technology, 26 (2012) 1773-1788.
    [22] T.B. Jones, T.B. Jones, Electromechanics of particles, Cambridge University Press, 2005.
    [23] Y. Gao, Y. Jian, L. Zhang, J. Huang, Magnetophoresis of nonmagnetic particles in ferrofluids, The Journal of Physical Chemistry C, 111 (2007) 10785-10791.
    [24] M.H. Pablico-Lansigan, S.F. Situ, A.C.S. Samia, Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy, Nanoscale, 5 (2013) 4040-4055.
    [25] 楊謝樂, 磁性奈米粒子於生物醫學上之應用, 物理雙月刊, 28 (2006) 692-697.
    [26] B.H. Erne, K. Butter, B.W. Kuipers, G.J. Vroege, Rotational diffusion in iron ferrofluids, Langmuir, 19 (2003) 8218-8225.
    [27] W. Meissner, R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfahigkeit, Naturwissenschaften, 21 (1933) 787-788.
    [28] C. Kittel, Introduction to Solid State Physics, 6th edn., 1986, in, Wiley.
    [29] D.K. Cheng, Field and wave electromagnetics, Addison-Wesley New York, 1989.
    [30] Y. Lai, W. Yin, J. Liu, R. Xi, J. Zhan, One-pot green synthesis and bioapplication of L-arginine-capped superparamagnetic Fe3O4 nanoparticles, Nanoscale research letters, 5 (2010) 302-307.
    [31] T.C. Halsey, W. Toor, Structure of electrorheological fluids, Physical review letters, 65 (1990) 2820.
    [32] P. Murau, B. Singer, The understanding and elimination of some suspension instabilities in an electrophoretic display, Journal of Applied Physics, 49 (1978) 4820-4829.
    [33] P.R. Gascoyne, J.V. Vykoukal, Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments, Proceedings of the IEEE, 92 (2004) 22-42.
    [34] R.M. Fitch, M.B. Prenosil, K.J. Sprick, The mechanism of particle formation in polymer hydrosols. I. kinetics of aqueous polymerization of methyl methacrylate, in: Journal of Polymer Science Part C: Polymer Symposia, Wiley Online Library, 1969, pp. 95-118.
    [35] W.D. Harkins, A General Theory of the Mechanism of Emulsion Polymerization1, Journal of the American Chemical Society, 69 (1947) 1428-1444.
    [36] J.W. Goodwin, R.H. Ottewill, Properties of concentrated colloidal dispersions, J. Chem. Soc., Faraday Trans., 87 (1991) 357-369.
    [37] R. Cox, M. Wilkinson, J. Creasey, A. Goodall, J. Hearn, Study of the anomalous particles formed during the surfactant‐free emulsion polymerization of styrene, Journal of Polymer Science: Polymer Chemistry Edition, 15 (1977) 2311-2319.
    [38] H. Qi, W. Hao, H. Xu, J. Zhang, T. Wang, Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure, Colloid and Polymer Science, 287 (2009) 243-248.
    [39] N. Van Landschoot, E. Kelder, J. Schoonman, Synthesis and characterization of LiCo1− x Fe x VO4 prepared by a citric acid complex method, Journal of Solid State Electrochemistry, 8 (2003) 28-33.
    [40] A. Dias, A. Hussain, A. Marcos, A. Roque, A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides, Biotechnology advances, 29 (2011) 142-155.
    [41] X. Wang, C. Zhao, P. Zhao, P. Dou, Y. Ding, P. Xu, Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system, Bioresource technology, 100 (2009) 2301-2304.
    [42] Y. Wang, X. Wang, G. Luo, Y. Dai, Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system, Bioresource technology, 99 (2008) 3881-3884.
    [43] S. Xuan, Y.-X.J. Wang, J.C. Yu, K.C.-F. Leung, Preparation, characterization, and catalytic activity of core/shell Fe3O4@ polyaniline@ Au nanocomposites, Langmuir, 25 (2009) 11835-11843.
    [44] H. Li, Z. Li, T. Liu, X. Xiao, Z. Peng, L. Deng, A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads, Bioresource technology, 99 (2008) 6271-6279.
    [45] E. Hee Kim, H. Sook Lee, B. Kook Kwak, B.-K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent, Journal of Magnetism and Magnetic Materials, 289 (2005) 328-330.
    [46] O. Olsvik, T. Popovic, E. Skjerve, K.S. Cudjoe, E. Hornes, J. Ugelstad, M. Uhlen, Magnetic separation techniques in diagnostic microbiology, Clinical microbiology reviews, 7 (1994) 43-54.
    [47] P. Gupta, C. Hung, F. Lam, D. Perrier, Synthesis and characterization of microspheres containing adriamycin and magnetite, International journal of pharmaceutics, 43 (1988) 167-177.
    [48] T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, Journal of Magnetism and Magnetic Materials, 293 (2005) 483-496.
    [49] A. Jordan, P. Wust, H. Fahling, W. John, A. Hinz, R. Felix, Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia, International Journal of Hyperthermia, 25 (2009) 499-511.
    [50] U. Hafeli, Scientific and clinical applications of magnetic carriers, Springer, 1997.
    [51] M.N. Widjojoatmodjo, A.C. Fluit, R. Torensma, J. Verhoef, Comparison of immunomagnetic beads coated with protein A, protein G, or goat anti-mouse immunoglobulins Applications in enzyme immunoassays and immunomagnetic separations, Journal of immunological methods, 165 (1993) 11-19.
    [52] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, science, 321 (2008) 385-388.
    [53] Y. Feng, X. Zhang, Y. Shen, K. Yoshino, W. Feng, A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite, Carbohydrate Polymers, 87 (2012) 644-649.
    [54] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano letters, 8 (2008) 902-907.
    [55] K.I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146 (2008) 351-355.
    [56] F. Schwierz, Graphene transistors, Nature nanotechnology, 5 (2010) 487-496.
    [57] 洪偉修教授, 世界上最薄的材料-石墨烯, 98 康熹化學報報 (康熹文化事業股份有限公司).
    [58] R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, A. Geim, Fine structure constant defines visual transparency of graphene, Science, 320 (2008) 1308-1308.
    [59] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films, science, 306 (2004) 666-669.
    [60] K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim, Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005) 10451-10453.
    [61] K. Novoselov, A.C. Neto, Two-dimensional crystals-based heterostructures: materials with tailored properties, Physica Scripta, 2012 (2012) 014006.
    [62] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (2009) 1312-1314.
    [63] C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, F.-R. Chen, Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition, Nano letters, 11 (2011) 3612-3616.
    [64] J. Hass, W. De Heer, E. Conrad, The growth and morphology of epitaxial multilayer graphene, Journal of Physics: Condensed Matter, 20 (2008) 323202.
    [65] W. Norimatsu, M. Kusunoki, Epitaxial graphene on SiC {0001}: advances and perspectives, Physical Chemistry Chemical Physics, 16 (2014) 3501-3511.
    [66] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society, 80 (1958) 1339-1339.
    [67] D. Luo, G. Zhang, J. Liu, X. Sun, Evaluation criteria for reduced graphene oxide, The Journal of Physical Chemistry C, 115 (2011) 11327-11335.
    [68] S. Peng, X. Fan, S. Li, J. Zhang, GREEN SYNTHESIS AND CHARACTERIZATION OF GRAPHITE OXIDE BY ORTHOGONAL EXPERIMENT, Journal of the Chilean Chemical Society, 58 (2013) 2213-2217.
    [69] T. Kuila, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials, Nanoscale, 5 (2013) 52-71.
    [70] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565.
    [71] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nature nanotechnology, 4 (2009) 217-224.
    [72] M. Naebe, J. Wang, A. Amini, H. Khayyam, N. Hameed, L.H. Li, Y. Chen, B. Fox, Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites, Scientific reports, 4 (2014).
    [73] A.Y. Serov, Z.-Y. Ong, E. Pop, Effect of grain boundaries on thermal transport in graphene, Applied Physics Letters, 102 (2013) 033104.
    [74] S. Yang, X. Feng, S. Ivanovici, K. Mullen, Fabrication of graphene‐encapsulated oxide nanoparticles: towards high‐performance anode materials for lithium storage, Angewandte Chemie International Edition, 49 (2010) 8408-8411.
    [75] Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, Green preparation of reduced graphene oxide for sensing and energy storage applications, Scientific reports, 4 (2014).
    [76] Y. Chen, Y. Li, D. Sun, D. Tian, J. Zhang, J.-J. Zhu, Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing, Journal of Materials Chemistry, 21 (2011) 7604-7611.
    [77] J. LIOU, Refining the grip on nature’s fine grains, Drilling contractor, 68 (2012).
    [78] W. Jiang, X. Chen, Y. Niu, B. Pan, Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water, Journal of hazardous materials, 243 (2012) 319-325.
    [79] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS nano, 4 (2010) 4806-4814.
    [80] J. Hong, K. Char, B.-S. Kim, Hollow capsules of reduced graphene oxide nanosheets assembled on a sacrificial colloidal particle, The Journal of Physical Chemistry Letters, 1 (2010) 3442-3445.
    [81] D. WookaLee, J. YoungaKim, H. SukaShin, Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides, Journal of Materials Chemistry, 21 (2011) 3438-3442.
    [82] S.A. Ju, K. Kim, J.-H. Kim, S.-S. Lee, Graphene-wrapped hybrid spheres of electrical conductivity, ACS applied materials & interfaces, 3 (2011) 2904-2911.
    [83] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature nanotechnology, 3 (2008) 101-105.
    [84] C.-L. Li, J.-K. Chen, S.-K. Fan, F.-H. Ko, F.-C. Chang, Electrorheological Operation of Low-/High-Permittivity Core/Shell SiO2/Au Nanoparticle Microspheres for Display Media, ACS applied materials & interfaces, 4 (2012) 5650-5661.
    [85] A. Patterson, The Scherrer formula for X-ray particle size determination, Physical review, 56 (1939) 978.
    [86] J.D. Peterson, S. Vyazovkin, C.A. Wight, Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly (propylene), Macromolecular Chemistry And Physics, 202 (2001) 775-784.
    [87] J. Yang, M. Wu, F. Chen, Z. Fei, M. Zhong, Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites, The Journal of Supercritical Fluids, 56 (2011) 201-207.
    [88] N. Wu, X. She, D. Yang, X. Wu, F. Su, Y. Chen, Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite, Journal of Materials Chemistry, 22 (2012) 17254-17261.
    [89] J. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J. Tascon, Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide, Langmuir, 25 (2009) 5957-5968.
    [90] L.Y. Yeo, D. Lastochkin, S.-C. Wang, H.-C. Chang, A new ac electrospray mechanism by Maxwell-Wagner polarization and capillary resonance, Physical review letters, 92 (2004) 133902.

    無法下載圖示 全文公開日期 2019/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE