簡易檢索 / 詳目顯示

研究生: Fery Prasetyo
Fery Prasetyo
論文名稱: 設計基於金屬有機框架的次奈米尺度離子二極體薄膜應用於高效滲透能源擷取
Engineering Subnanoscale Ionic Diode Membranes Based on Metal-organic Frameworks for Efficient Osmotic Energy Harvesting
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 葉禮賢
Li-Hsien Yeh
吳嘉文
Kevin C.-W. Wu
王丞浩
Chen-Hao Wang
林立強
Li-Chiang Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 96
中文關鍵詞: 奈米流體離子傳輸離子二極管膜離子分離器金屬有機骨架(MOF)滲透能量收集
外文關鍵詞: Nanofluidics, Ion transport, Ionic diode membrane, Ion separator, Metal-organic framework (MOF), Osmotic energy harvesting
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可持續能源存儲和收集技術不斷發展,其中之一是鋰電池。鋰電池仍然存在一些限制,例如不穩定的固體電解質界面(SEI)層導致鋰樹枝的形成,從而限制了它們的應用。這是由鋰離子傳輸低和離子通量分佈不均勻引起的。除此之外,它的快速發展還產生了含有無機鹽的有機廢物,這些廢物還包含大量能量,可以利用奈米流體裝置和滲透能量收集技術來收集。滲透能量因其作為一種清潔和可持續技術的潛力而引起了重大關注。電鰻中存在的離子通道有效地產生電能,並啟發了滲透能量的研究,該研究利用離子選擇性膜存儲在濃度梯度中的化學勢。盡管存在這種潛力,滲透能量的研究和發展仍然尚未成熟。在本報告中,我們提出了一種通過設計非對稱離子二極管膜來優化滲透能量提取的策略。該論文將涵蓋膜的兩個主要部分:第一部分涉及工程金屬有機骨架(MOF)基離子二極管膜(IDM),該膜由薄的HKUST-1 MOF層和分支的氧化鋁納米通道膜(BANM)組成;第二部分是MIL-53-NH2 MOF嵌入的BANM。在第一部分中,HKUST-1 MOF充當離子選擇層,而BANM則充當離子傳導層。結果表明,開發的膜具有連續、大面積、次納米結構、無孔、高幾何梯度的膜結構,因此膜可以用作滲透能量收集器。這種異質膜展現出強烈的離子二極管效應,在LiCl-甲醇溶液中能夠實現放大和單向離子傳輸行為。討論了諸如膜結構和溶劑等對發電的幾個關鍵因素的影響。我們展示,當將0.5 M LiCl-甲醇溶液與純甲醇溶劑混合時,IDM可以產生10.1 W/m2的高滲透功率密度,並且在2 M LiCl-甲醇的高餵養濃度下,可以提高到前所未有的約30.2 W/m2。在第二部分中,亞納米級MIL-53-NH2 MOF的填充顯著增強了BANM的整流能力,表明其在水溶液中提高滲透能量收集性能的潛力。實驗結果顯示,開發的膜能夠在海水/河水配對下生成5.75 W/m2的高功率密度。這項研究為利用基於金屬有機骨架和納流體裝置的膜的破壞性結構優化滲透能量收集開辟了一條新途徑。


    Sustainable energy storage and harvesting technology continue to develop, one of which is the lithium-ion battery. Lithium ion batteries still have limitations, such as the unstable solid-electrolyte interphase (SEI) layer which causes the lithium dendrites formation, thus limiting their applications. This is caused by low lithium ion transport and uneven ion flux distribution. Apart from that, its rapid development also produces organic waste containing inorganic salts which also contain large amounts of energy and can be harvested with nanofluidic devices, osmotic energy harvesting technology. Osmotic energy has garnered significant attention for its potential as a clean and sustainable technology. Ion channels present in electric eels, which effectively generate electrical energy, have inspired the osmotic energy harnesses chemical potential stored in concentration gradients using ion-selective membranes. Despite this potential, research and development in osmotic energy have yet to mature. In this report, we propose a strategy to optimize osmotic energy extraction by designing asymmetric ionic diode membranes. This thesis will cover two main parts of membranes: the first involves engineering a metal-organic framework (MOF)-based ionic diode membrane (IDM), which is composed of a thin HKUST-1 MOF layer and a branched alumina nanochannel membrane (BANM), and the second is the MIL-53-NH2 MOF embedded BANM. In the first part, the HKUST-1 MOF acts as an ion selective layer and the BANM functions as an ion conduction layer. The results demonstrate that the developed membrane possesses a continuous, large-area, subnanoscale structure, pinhole-free, and high geometry gradient membrane structure, so that membrane can be utilized as an osmotic energy harvester. This heterogeneous membrane shows a strong ionic-diode effect, capable of achieving an amplified and unidirectional ion transport behavior in LiCl-methanol solution. The effect of several key factors on the power generation, such as membrane structure and solvent, are discussed. We demonstrate that the IDM can produce a high-osmotic power density of 10.1 W/m2 when mixing 0.5 M LiCl-methanol solution with pure methanol solvent and can be promoted to an unprecedented value of ~30.2 W/m2 under highly feed concentration of 2 M LiCl-methanol. In the second part, the filling of subnanoscale MIL-53-NH2 MOF significantly enhances rectification ability of the BANM, showing its potential of enhancing osmotic energy harvesting performance in aqueous solutions. Experimental results show that the developed membrane is capable of generating a high-power density of ~5.75 W/m2 under an artificial seawater/river water pair. This research provides a new pave way into the utilization of metal-organic frameworks and nanofluidic devices-based membrane with broken symmetry structure for optimizing osmotic energy harvesting.

    Abstract i 摘要 iii Acknowledgement v Table of Contents vi List of Figures ix List of Tables xv Chapter 1 Introduction 1 1.1 Preface 1 1.2 Motivation 2 1.3 Literature review 7 1.4 Objectives 15 Chapter 2 Principles and Mechanisms 16 2.1 Metal-organic frameworks 16 2.2 Electrical double layer 18 2.3 Ion selectivity 20 2.4 Ion current rectification 21 2.5 Osmotic energy generation 23 Chapter 3 Materials and Methods 27 3.1 Chemicals and equipment 27 3.1.1. Chemicals 27 3.1.2. Equipment 28 3.1.3. Analytical instruments 30 3.2 Experimental section 32 3.2.1. Fabrication process of the HKUST-1@BANM 32 3.2.2. Fabrication process of MIL-53-NH2 36 3.2.3. Electrical measurements 37 Chapter 4 Results and Discussion 40 4.1 Part 1: A Heterogeneous Ionic Diode Membrane with High Geometry Gradient Based on Metal-Organic Frameworks for Efficient Osmotic Power Generation in Organic Solution 40 4.1.1. Material characterizations 40 4.1.2. Ion transport behavior: Boosting lithium-ion transport in nanoconfined spaces 48 4.1.3. Osmotic energy harvesting 56 4.1.4. Stability tests 71 4.2 Part II: Engineering Subnanochannel MOF-embedded Asymmetric Nanochannel Membrane for Efficient Osmotic Energy Harvesting 73 4.2.1. Material characterizations 73 4.2.2. Ion transport properties 77 4.2.3. Osmotic energy harvesting 80 Chapter 5 Conclusion 85 References 87

    [1] Gerland, P.; Raftery, A. E.; Sevcikova, H.; Li, N.; Gu, D. A.; Spoorenberg, T.; Alkema, L.; Fosdick, B. K.; Chunn, J.; Lalic, N.; Bay, G.; Buettner, T.; Heilig, G. K.; Wilmoth, J., World population stabilization unlikely this century. Science 2014, 346 (6206), 234-237.
    [2] Chu, S.; Majumdar, A., Opportunities and challenges for a sustainable energy future. Nature 2012, 488 (7411), 294-303.
    [3] Wagner, B.; Hauer, C.; Schoder, A.; Habersack, H., A review of hydropower in Austria: Past, present and future development. Renew. Sustain. Energy Rev. 2015, 50, 304-314.
    [4] Herbert, G. M. J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S., A review of wind energy technologies. Renew. Sustain. Energy Rev. 2007, 11 (6), 1117-1145.
    [5] Brunet, C.; Savadogo, O.; Baptiste, P.; Bouchard, M. A., Shedding some light on photovoltaic solar energy in Africa - A literature review. Renew. Sustain. Energy Rev. 2018, 96, 325-342.
    [6] Yang, Y.; Okonkwo, E. G.; Huang, G.; Xu, S.; Sun, W.; He, Y., On the sustainability of lithium ion battery industry – A review and perspective. Energy Stor. Mater. 2021, 36, 186-212.
    [7] Mrozik, W.; Rajaeifar, M. A.; Heidrich, O.; Christensen, P., Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 2021, 14 (12), 6099-6121.
    [8] Bae, H.; Kim, Y., Technologies of lithium recycling from waste lithium ion batteries: a review. Mater. Adv. 2021, 2 (10), 3234-3250.
    [9] Guo, Y.; Li, H.; Zhai, T., Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Adv. Mater. 2017, 29 (29), 1700007.
    [10] Shi, R.; Shen, Z.; Yue, Q.; Zhao, Y., Advances in functional organic material-based interfacial engineering on metal anodes for rechargeable secondary batteries. Nanoscale 2023, 15 (21), 9256-9289.
    [11] Yamaki, J.-i.; Tobishima, S.-i.; Hayashi, K.; Keiichi, S.; Nemoto, Y.; Arakawa, M., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 1998, 74 (2), 219-227.
    [12] Luo, S.; Deng, N.; Wang, H.; Zeng, Q.; Li, Y.; Kang, W.; Cheng, B., Facilitating Li+ conduction channels and suppressing lithium dendrites by introducing Zn-based MOFs in composite electrolyte membrane with excellent thermal stability for solid-state lithium metal batteries. Chem. Eng. J. 2023, 474, 145683.
    [13] Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; Abbott, A.; Ryder, K.; Gaines, L.; Anderson, P., Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575 (7781), 75-86.
    [14] Zhou, L.-F.; Yang, D.; Du, T.; Gong, H.; Luo, W.-B., The Current Process for the Recycling of Spent Lithium Ion Batteries. Frontiers in Chemistry 2020, 8.
    [15] Dobó, Z.; Dinh, T.; Kulcsár, T., A review on recycling of spent lithium-ion batteries. Energy Reports 2023, 9, 6362-6395.
    [16] Bing, S.; Xian, W.; Chen, S.; Song, Y.; Hou, L.; Liu, X.; Ma, S.; Sun, Q.; Zhang, L., Bio-inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction. Matter 2021, 4 (6), 2027-2038.
    [17] Fauziah, A. R.; Chu, C.-W.; Yeh, L.-H., Engineered subnanochannel ionic diode membranes based on metal–organic frameworks for boosted lithium ion transport and osmotic energy conversion in organic solution. Chem. Eng. J. 2023, 452, 139244.
    [18] Liu, Y.-C.; Yeh, L.-H.; Zheng, M.-J.; Wu, K. C.-W., Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 2021, 7 (10), eabe9924.
    [19] Jia, Z. J.; Wang, B. G.; Song, S. Q.; Fan, Y. S., Blue energy: Current technologies for sustainable power generation from water salinity gradient. RENEWABLE & SUSTAINABLE ENERGY REVIEWS 2014, 31, 91-100.
    [20] Zhang, Z.; Wen, L. P.; Jiang, L., Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6 (7), 622-639.
    [21] Siria, A.; Bocquet, M. L.; Bocquet, L., New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 2017, 1 (11), 0091.
    [22] Ramon, G. Z.; Feinberg, B. J.; Hoek, E. M. V., Membrane-based production of salinity-gradient power. Energy Environ. Sci. 2011, 4 (11), 4423-4434.
    [23] Yeh, L.-H.; Chen, F.; Chiou, Y.-T.; Su, Y.-S., Anomalous pH-Dependent Nanofluidic Salinity Gradient Power. Small 2017, 13 (48), 1702691.
    [24] Pan, S. F.; Liu, P.; Li, Q.; Zhu, B.; Liu, X. L.; Lao, J. C.; Gao, J.; Jiang, L., Toward Scalable Nanofluidic Osmotic Power Generation from Hypersaline Water Sources with a Metal-Organic Framework Membrane. Angew. Chem. Int. Ed. 2023, 62 (19), e202218129.
    [25] Pattle, R. E., Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile. Nature 1954, 174 (4431), 660.
    [26] Gao, M.; Zheng, M.-J.; El-Mahdy, A. F. M.; Chang, C.-W.; Su, Y.-C.; Hung, W.-H.; Kuo, S.-W.; Yeh, L.-H., A bioinspired ionic diode membrane based on sub-2 nm covalent organic framework channels for ultrahigh osmotic energy generation. Nano Energy 2023, 105, 108007.
    [27] Feng, J.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A., Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536 (7615), 197-200.
    [28] Ma, Y.; Yeh, L.-H.; Lin, C.-Y.; Mei, L.; Qian, S., pH-Regulated Ionic Conductance in a Nanochannel with Overlapped Electric Double Layers. Anal. Chem. 2015, 87 (8), 4508-4514.
    [29] Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L., High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation. J. Am. Chem. Soc. 2014, 136 (35), 12265-12272.
    [30] Zhang, Z.; Kong, X.-Y.; Xiao, K.; Liu, Q.; Xie, G.; Li, P.; Ma, J.; Tian, Y.; Wen, L.; Jiang, L., Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device. J. Am. Chem. Soc. 2015, 137 (46), 14765-14772.
    [31] Li, R.; Jiang, J.; Liu, Q.; Xie, Z.; Zhai, J., Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 2018, 53, 643-649.
    [32] Wang, C.; Liu, F.-F.; Tan, Z.; Chen, Y.-M.; Hu, W.-C.; Xia, X.-H., Fabrication of Bio-Inspired 2D MOFs/PAA Hybrid Membrane for Asymmetric Ion Transport. Adv. Funct. Mater. 2020, 30 (9), 1908804.
    [33] Zhang, Z.; He, L.; Zhu, C.; Qian, Y.; Wen, L.; Jiang, L., Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Comm. 2020, 11 (1), 875.
    [34] Hou, S.; Zhang, Q.; Zhang, Z.; Kong, X.; Lu, B.; Wen, L.; Jiang, L., Charged porous asymmetric membrane for enhancing salinity gradient energy conversion. Nano Energy 2021, 79, 105509.
    [35] Zhu, C.; Liu, P.; Niu, B.; Liu, Y.; Xin, W.; Chen, W.; Kong, X.-Y.; Zhang, Z.; Jiang, L.; Wen, L., Metallic Two-Dimensional MoS2 Composites as High-Performance Osmotic Energy Conversion Membranes. J. Am. Chem. Soc. 2021, 143 (4), 1932-1940.
    [36] Zhou, S.; Xie, L.; Zhang, L.; Wen, L.; Tang, J.; Zeng, J.; Liu, T.; Peng, D.; Yan, M.; Qiu, B.; Liang, Q.; Liang, K.; Jiang, L.; Kong, B., Interfacial Super-Assembly of Ordered Mesoporous Silica–Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. ACS Appl. Mater. Interfaces 2021, 13 (7), 8782-8793.
    [37] Chen, J.; Xin, W.; Chen, W.; Zhao, X.; Qian, Y.; Kong, X.-Y.; Jiang, L.; Wen, L., Biomimetic Nanocomposite Membranes with Ultrahigh Ion Selectivity for Osmotic Power Conversion. ACS Cent. Sci. 2021, 7 (9), 1486-1492.
    [38] Liu, P.; Zhou, T.; Yang, L.; Zhu, C.; Teng, Y.; Kong, X.-Y.; Wen, L., Synergy of light and acid–base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy Environ. Sci. 2021, 14 (8), 4400-4409.
    [39] Chen, W.; Dong, T.; Xiang, Y.; Qian, Y.; Zhao, X.; Xin, W.; Kong, X.-Y.; Jiang, L.; Wen, L., Ionic Crosslinking-Induced Nanochannels: Nanophase Separation for Ion Transport Promotion. Adv. Mater. 2022, 34 (3), 2108410.
    [40] Chang, C.-W.; Chu, C.-W.; Su, Y.-S.; Yeh, L.-H., Space charge enhanced ion transport in heterogeneous polyelectrolyte/alumina nanochannel membranes for high-performance osmotic energy conversion. J. Mater. Chem. A 2022, 10 (6), 2867-2875.
    [41] Li, Z.-Q.; Zhu, G.-L.; Mo, R.-J.; Wu, M.-Y.; Ding, X.-L.; Huang, L.-Q.; Wu, Z.-Q.; Xia, X.-H., Light-Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal–Organic Framework Membranes. Angew. Chem. Int. Ed. 2022, 61 (22), e202202698.
    [42] Ding, L.; Xiao, D.; Zhao, Z.; Wei, Y.; Xue, J.; Wang, H., Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion. Adv. Sci. 2022, 9 (25), 2202869.
    [43] Awati, A.; Zhou, S.; Shi, T.; Zeng, J.; Yang, R.; He, Y.; Zhang, X.; Zeng, H.; Zhu, D.; Cao, T.; Xie, L.; Liu, M.; Kong, B., Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion. ACS Appl. Mater. Interfaces 2023, 15 (22), 27075-27088.
    [44] Chen, C.; Liu, D.; Yang, G.; Wang, J.; Wang, L.; Lei, W., Bioinspired Ultrastrong Nanocomposite Membranes for Salinity Gradient Energy Harvesting from Organic Solutions. Adv. Energy Mater. 2020, 10 (18), 1904098.
    [45] Chen, C.; Liu, D.; Qing, X.; Yang, G.; Wang, X.; Lei, W., Robust Membrane for Osmotic Energy Harvesting from Organic Solutions. ACS Appl. Mater. Interfaces 2020, 12 (47), 52771-52778.
    [46] Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
    [47] Salunkhe, R. R.; Kaneti, Y. V.; Yamauchi, Y., Metal–Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano 2017, 11 (6), 5293-5308.
    [48] Zhou, H.-C.; Long, J. R.; Yaghi, O. M., Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 673-674.
    [49] Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D., A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283 (5405), 1148-1150.
    [50] Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112 (2), 1232-1268.
    [51] Sran, B. S.; Lee, E. W.; Yoon, J. W.; Jo, D.; Cho, K. H.; Lee, S.-K.; Lee, U. H., Selective adsorption of acetylene over carbon dioxide on glycine functionalized HKUST-1 with enhanced moisture stability. Sep. Purif. Technol. 2024, 328, 124939.
    [52] Salionov, D.; Semivrazhskaya, O. O.; Casati, N. P. M.; Ranocchiari, M.; Bjelić, S.; Verel, R.; van Bokhoven, J. A.; Sushkevich, V. L., Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nat. Commun. 2022, 13 (1), 3762.
    [53] Li, Z.; Wu, Y.-n.; Li, J.; Zhang, Y.; Zou, X.; Li, F., The Metal–Organic Framework MIL-53(Al) Constructed from Multiple Metal Sources: Alumina, Aluminum Hydroxide, and Boehmite. Chem.Eur.J. 2015, 21 (18), 6913-6920.
    [54] Parsons, R., Models of the Electrical Double Layer. In Trends in Interfacial Electrochemistry, Silva, A. F., Ed. Springer Netherlands: Dordrecht, 1986; pp 373-385.
    [55] Xiao, K.; Jiang, L.; Antonietti, M., Ion Transport in Nanofluidic Devices for Energy Harvesting. Joule 2019, 3 (10), 2364-2380.
    [56] Chu, C.-W.; Fauziah, A. R.; Yeh, L.-H., Optimizing Membranes for Osmotic Power Generation. Angew. Chem. Int. Ed. 2023, 62 (26), e202303582.
    [57] Vlassiouk, I.; Smirnov, S.; Siwy, Z., Ionic Selectivity of Single Nanochannels. Nano Lett. 2008, 8 (7), 1978-1985.
    [58] Guo, W.; Tian, Y.; Jiang, L., Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores. Acc. Chem. Res. 2013, 46 (12), 2834-2846.
    [59] Cheng, L.-J.; Guo, L. J., Nanofluidic diodes. Chem. Soc. Rev. 2010, 39 (3), 923-938.
    [60] Zhang, Z.; Kong, X.-Y.; Xiao, K.; Xie, G.; Liu, Q.; Tian, Y.; Zhang, H.; Ma, J.; Wen, L.; Jiang, L., A Bioinspired Multifunctional Heterogeneous Membrane with Ultrahigh Ionic Rectification and Highly Efficient Selective Ionic Gating. Adv. Mater. 2016, 28 (1), 144-150.
    [61] Qin, H.; Wu, H.; Zeng, S.-M.; Yi, F.; Qin, S.-Y.; Sun, Y.; Ding, L.; Wang, H., Harvesting osmotic energy from proton gradients enabled by two-dimensional Ti3C2Tx MXene membranes. Adv. Membr. 2022, 2, 100046.
    [62] Liu, P.; Sun, Y.; Zhu, C.; Niu, B.; Huang, X.; Kong, X.-Y.; Jiang, L.; Wen, L., Neutralization Reaction Assisted Chemical-Potential-Driven Ion Transport through Layered Titanium Carbides Membrane for Energy Harvesting. Nano Lett. 2020, 20 (5), 3593-3601.
    [63] Hong, J. G.; Zhang, B.; Glabman, S.; Uzal, N.; Dou, X.; Zhang, H.; Wei, X.; Chen, Y., Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. J. Membr. Sci. 2015, 486, 71-88.
    [64] Post, J. W.; Veerman, J.; Hamelers, H. V. M.; Euverink, G. J. W.; Metz, S. J.; Nymeijer, K.; Buisman, C. J. N., Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. J. Membr. Sci. 2007, 288 (1), 218-230.
    [65] Siria, A.; Poncharal, P.; Biance, A.-L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494 (7438), 455-458.
    [66] Mao, Y.; shi, L.; Huang, H.; Cao, W.; Li, J.; Sun, L.; Jin, X.; Peng, X., Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation. Chem. Commun. 2013, 49 (50), 5666-5668.
    [67] Liu, Y.; Chen, Y.; Guo, Y.; Wang, X.; Ding, S.; Sun, X.; Wang, H.; Zhu, Y.; Jiang, L., Photo-controllable Ion-Gated Metal–Organic Framework MIL-53 Sub-nanochannels for Efficient Osmotic Energy Generation. ACS Nano 2022, 16 (10), 16343-16352.
    [68] Luo, Y.-H.; Huang, J.; Jin, J.; Peng, X.; Schmitt, W.; Ichinose, I., Formation of Positively Charged Copper Hydroxide Nanostrands and Their Structural Characterization. Chem. Mater. 2006, 18 (7), 1795-1802.
    [69] Lin, K.-S.; Adhikari, A. K.; Ku, C.-N.; Chiang, C.-L.; Kuo, H., Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. Int. J. Hydrogen Energy 2012, 37 (18), 13865-13871.
    [70] Seo, Y.-K.; Hundal, G.; Jang, I. T.; Hwang, Y. K.; Jun, C.-H.; Chang, J.-S., Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Microporous Mesoporous Mater. 2009, 119 (1), 331-337.
    [71] Zhou, H.; Liu, X.; Zhang, J.; Yan, X.; Liu, Y.; Yuan, A., Enhanced room-temperature hydrogen storage capacity in Pt-loaded graphene oxide/HKUST-1 composites. Int. J. Hydrogen Energy. 2014, 39 (5), 2160-2167.
    [72] Li, Z.; Guo, Y.; Wang, X.; Ying, W.; Chen, D.; Ma, X.; Zhao, X.; Peng, X., Highly conductive PEDOT:PSS threaded HKUST-1 thin films. Chem. Commun. 2018, 54 (98), 13865-13868.
    [73] Guo, Y.; Ying, Y.; Mao, Y.; Peng, X.; Chen, B., Polystyrene Sulfonate Threaded through a Metal–Organic Framework Membrane for Fast and Selective Lithium-Ion Separation. Angew. Chem. Int. Ed. 2016, 55 (48), 15120-15124.
    [74] Li, M.; Constantinescu, D.; Wang, L.; Mohs, A.; Gmehling, J., Solubilities of NaCl, KCl, LiCl, and LiBr in Methanol, Ethanol, Acetone, and Mixed Solvents and Correlation Using the LIQUAC Model. Ind. Eng. Chem. Res. 2010, 49 (10), 4981-4988.
    [75] Liu, Y.-C.; Yeh, L.-H.; Zheng, M.-J.; Wu, K. C. W., Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 2021, 7 (10), eabe9924.
    [76] Cui, Y.; Chung, T.-S., Pharmaceutical concentration using organic solvent forward osmosis for solvent recovery. Nat. Comm. 2018, 9 (1), 1426.
    [77] Nightingale, E. R., Jr., Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. 1959, 63 (9), 1381-1387.

    無法下載圖示 全文公開日期 2026/01/17 (校內網路)
    全文公開日期 2026/01/17 (校外網路)
    全文公開日期 2026/01/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE