簡易檢索 / 詳目顯示

研究生: 葉彥妤
Yen-Yu Yeh
論文名稱: 利用大氣常壓微電漿合成石墨烯量子點及其光致發光感測之研究
Microplamsa Synthesis of Graphene Quantum Dots for Photoluminescent Nanosensors
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 鄭智嘉
Chih-Chia Cheng
劉沂欣
Yi-Hsin Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 96
中文關鍵詞: 大氣常壓微電漿石墨烯量子點葉酸亞鐵離子光致發光感測器
外文關鍵詞: Atmosphere-pressure microplasma, Graphene quantum dots, Folic acid, Ferrous iron, Photoluminescence sensing
相關次數: 點閱:483下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葉酸對於人體的生理上有著至關的重要性。而亞鐵離子在環境和人體中亦扮演著一定的角色。因此,開發一款簡單、靈敏且準確的系統檢測生物系統中葉酸和亞鐵離子是非常有意義的。近年,石墨烯量子點因其量子限制以及邊緣效應,使其光學性能被廣泛應用在光學傳感應用中。儘管現今有許多種方法能夠製備石墨烯量子點,但仍有些許的缺點,如操作複雜、高溫的製程環境以及冗長的反應時間等。需要開發一種簡便且環保的大氣常壓微電漿合成石墨烯量子點或感測器。而基於光致發光的石墨烯量子點感測器展現了它的便利性、快速的回應、高靈敏及選擇性。
    本研究將分享,檸檬酸在缺少化學還原劑下透過大氣常壓微電漿系統合成石墨烯量子點。並將合成的石墨烯量子點作為光致發光探針去感測葉酸和亞鐵離子。此外,可以通過簡單地調整氫氧化鈉的比例和反應溫度來調節石墨烯量子點的光致發光熒光強度。在這,我們探索了石墨烯量子點、葉酸和亞鐵離子的選擇性與能量轉移和碳官能基團之間的關係。根據XPS和FTIR研究結果,可簡單證實石墨烯量子點與葉酸形成的奈米共軛物,並可以進一步用作熒光探針進行亞鐵離子感測。本研究提供了一種合成石墨烯量子點的新方法,可同時檢測葉酸和亞鐵離子,且具有良好的選擇性、靈敏度和檢測極限。


    Folic acid (FA) is essential for the physiological processes in human body. Ferrous iron (Fe2+ ion) also plays a critical role in the areas of environmental systems and human body. Therefore, it is important to develop simple, sensitive and accurate methods for detection of FA and Fe2+ ions in biological systems. Recently graphene quantum dots (GQDs) have been shown with strong quantum confinement and edge effects, leading them exhibit unique optical properties for optical sensing applications. While several methods can be used to prepare GQDs, they are disadvantaged with limiting of reactants, complicated operation, time consuming inefficiency and high temperature required. It is needed to develop a facile and green microplasma-assisted synthesis of GQDs or sensing applications. Furthermore, photoluminescence sensing performance of GQDs is a simplicity, rapid response, superior sensitivity and selectivity detection.
    Here, we report a study to synthesis GQDs from citric acid without chemical reducing agents using microplasma under ambient conditions. The PL spectroscopic study indicates the synthesized GQDs could be used as a PL probe for FA and Fe2+ ion sensing. In addition, the PL fluorescence intensity of GQDs could be tuned by simply adjusting the ratio of NaOH and the reaction temperature. Moreover, we explored that the selectivity of GQDs, FA and Fe2+ ion relationship between the energy transfer and carbon functionalities. Systematic XPS and FTIR study suggest that the GQDs/FA nanoconjugates could be further applied as the fluorescence probe for Fe2+ ion sensing. Our work provides a new method to synthesis GQDs for dual sensing of FA and Fe2+ ion with good selectivity, sensitivity and limit of detection (LOD).

    Abstract I 摘要 II Contents III List of Figures V List of Tables IX 1. Introduction 1 1.1 Photoluminescence (PL) 1 1.1.1 Photoluminescence (PL) properties 1 1.1.2 Photoluminescence (PL) applications 3 1.1.3 Folic acid (FA) and Ferrous iron (Fe2+ ion) sensing 6 1.2 Graphene Quantum Dots (GQDs) 9 1.2.1 Synthetic method 11 1.3 Atmospheric pressure microplamsa technique 14 1.4 Photoinduced electron transfer (PET) 20 1.5 Fluorescence resonance energy transfer (FRET) 24 2 Experimental section 27 2.1 Chemicals 27 2.2 Characterization 27 2.2.1 Ultraviolet-Visible absorbance spectroscopy (UV-Vis) 27 2.2.2 Photoluminescence spectroscopy (PL) 27 2.2.3 Fourier-transform infrared spectroscopy (FT-IR) 27 2.2.4 Transmission electron microscope (TEM) 28 2.2.5 X-ray photoelectron spectroscopy (XPS) 28 2.2.6 Raman spectroscopy 28 2.2.7 Ultraviolet photoelectron spectroscopy (UPS) 28 2.3 Procedure 29 2.4 Microplasma-assisted synthesis of Graphene Quantum Dots (GQDs) 29 2.5 Carbon functionalities calculation 31 2.6 PL-based FA sensing 31 2.7 PL-based Fe2+ ion sensing 31 2.8 Yield calculation 32 3 Synthesis and Characterization of Graphene Quantum Dots 33 3.1 Synthesis of Graphene Quantum Dots (GQDs) 33 3.1.1 Characterization of GQDs 33 3.1.2 Parameter control 37 3.1.3 Comparison between microplasma and hydrothermal treatment 42 3.1.4 Comparison the treatment and precursors of different GQDs 46 4 Photoluminescence sensing 50 4.1 Photoluminescence-based FA sensing 50 4.1.1 PET mechanism between GQDs and FA 59 4.1.2 Impact factor of selectivity 62 4.2 Photoluminescence-based Fe2+ ion sensing 67 4.2.1 FRET mechanism between GQDs-FA and Ferrous iron 72 5 Conclusion 75 6 References 76

    1. Maity, N., et al., Optoelectronic and photovoltaic properties of graphene quantum dot-polyaniline nanostructures. Journal of Materials Chemistry A, 2015. 3(41): p. 20736-20748.
    2. Zhu, S., et al., The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research, 2015. 8(2): p. 355-381.
    3. Lin, L., et al., Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends in Analytical Chemistry, 2014. 54: p. 83-102.
    4. Zhu, S., et al., Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up‐conversion bioimaging applications. Advanced Functional Materials, 2012. 22(22): p. 4732-4740.
    5. Sk, M.A., et al., Revealing the tunable photoluminescence properties of graphene quantum dots. Journal of Materials Chemistry C, 2014. 2(34): p. 6954-6960.
    6. Zhu, C., J. Zhai, and S. Dong, Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chemical Communications, 2012. 48(75): p. 9367-9369.
    7. Liu, H., T. Ye, and C. Mao, Fluorescent carbon nanoparticles derived from candle soot. Angewandte Chemie International Edition, 2007. 46(34): p. 6473-6475.
    8. Pan, D., et al., Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chemical Communications, 2010. 46(21): p. 3681-3683.
    9. Welsher, K., et al., A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotechnology, 2009. 4(11): p. 773.
    10. Jeong, J., et al., Synthesis and characterization of a photoluminescent nanoparticle based on fullerene–silica hybridization. Angewandte Chemie International Edition, 2009. 48(29): p. 5296-5299.
    11. Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010. 2(12): p. 1015-1024.
    12. Shen, H., et al., Biomedical applications of graphene. Theranostics, 2012. 2(3): p. 283-294.
    13. Wang, J., X. Xin, and Z. Lin, Cu 2 ZnSnS 4 nanocrystals and graphene quantum dots for photovoltaics. Nanoscale, 2011. 3(8): p. 3040-3048.
    14. Ye, R., et al., Bandgap engineering of coal-derived graphene quantum dots. ACS Applied Materials & Interfaces, 2015. 7(12): p. 7041-7048.
    15. Qu, D., et al., Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 2014. 4: p. 1-11.
    16. Kundu, S., et al., Synthesis of N, F and S co-doped graphene quantum dots. Nanoscale, 2015. 7(27): p. 11515-11519.
    17. Tian, P., et al., Graphene quantum dots from chemistry to applications. Materials today chemistry, 2018. 10: p. 221-258.
    18. Lin, Y., R. Chapman, and M.M. Stevens, Integrative Self‐Assembly of Graphene Quantum Dots and Biopolymers into a Versatile Biosensing Toolkit. Advanced Functional Materials, 2015. 25(21): p. 3183-3192.
    19. YoungáKim, D., Ultraviolet and blue emitting graphene quantum dots synthesized from carbon nano-onions and their comparison for metal ion sensing. Chemical Communications, 2015. 51(20): p. 4176-4179.
    20. Tan, X., et al., Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chemical Communications, 2015. 51(13): p. 2544-2546.
    21. Stephens, D.J. and V.J. Allan, Light microscopy techniques for live cell imaging. Science, 2003. 300(5616): p. 82-86.
    22. Kobayashi, H., et al., New strategies for fluorescent probe design in medical diagnostic imaging. Chemical Reviews, 2009. 110(5): p. 2620-2640.
    23. Hai, X., et al., Folic acid encapsulated graphene quantum dots for ratiometric pH sensing and specific multicolor imaging in living cells. Sensors and Actuators B-Chemical, 2018. 268: p. 61-69.
    24. Zhao, S.L., et al., Determination of folic acid by capillary electrophoresis with chemiluminescence detection. Journal of Chromatography A, 2006. 1107(1-2): p. 290-293.
    25. Gupta, V., et al., Copper (II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sensors and Actuators B: Chemical, 2006. 117(1): p. 99-106.
    26. Gupta, V.K., R. Prasad, and A. Kumar, Preparation of ethambutol–copper (II) complex and fabrication of PVC based membrane potentiometric sensor for copper. Talanta, 2003. 60(1): p. 149-160.
    27. Lin, M., et al., Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions. Analytica Chimica Acta, 2012. 746: p. 63-69.
    28. Jones, M., et al., The simultaneous determination of traces of cobalt, chromium, copper, iron, manganese and zinc by atomic fluorescence spectrometry with preconcentration by an automated solvent extraction procedure. Analytica Chimica Acta, 1973. 63(1): p. 210-215.
    29. Ghaedi, M., F. Ahmadi, and A. Shokrollahi, Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. Journal of Hazardous Materials, 2007. 142(1-2): p. 272-278.
    30. Dobrowolska, J., et al., Quantitative imaging of zinc, copper and lead in three distinct regions of the human brain by laser ablation inductively coupled plasma mass spectrometry. Talanta, 2008. 74(4): p. 717-723.
    31. Niu, W.-J., et al., Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and L-ascorbic acid. Carbon, 2016. 96: p. 1034-1042.
    32. Niu, F., et al., Electrochemically generated green-fluorescent N-doped carbon quantum dots for facile monitoring alkaline phosphatase activity based on the Fe3+-mediating ON-OFF-ON-OFF fluorescence principle. Carbon, 2018. 127: p. 340-348.
    33. Carrasco, P.M., et al., Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection. Carbon, 2016. 109: p. 658-665.
    34. Mandal, P., et al., Fluorescence turn-on and turn-off sensing of pesticides by carbon dot-based sensor. New Journal of Chemistry, 2019. 43(30): p. 12137-12151.
    35. Du, Y. and S. Guo, Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale, 2016. 8(5): p. 2532-2543.
    36. Liu, J.-J., et al., Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid. Sensors and Actuators B: Chemical, 2015. 212: p. 214-219.
    37. Moat, S.J., et al., Folate, homocysteine, endothelial function and cardiovascular disease. Journal of Nutritional Biochemistry, 2004. 15(2): p. 64-79.
    38. Tomaszewski, J.J., et al., Increased cancer cell proliferation in prostate cancer patients with high levels of serum folate. The Prostate, 2011. 71(12): p. 1287-1293.
    39. Kwong, L.C. and L.C. Wa, A Practical Guide of Anaemia Management for General Practitioners.
    40. Jiang, S., et al., A fluorescent sensor for folic acid based on crown ether-bridged bis-tetraphenylethylene. Analyst, 2019. 144(8): p. 2662-2669.
    41. Li, X., et al., Label-free detection of folic acid using a sensitive fluorescent probe based on ovalbumin stabilized copper nanoclusters. Talanta, 2019. 195: p. 372-380.
    42. Qian, J., et al., Aconitic acid derived carbon dots: Conjugated interaction for the detection of folic acid and fluorescence targeted imaging of folate receptor overexpressed cancer cells. Sensors and Actuators B: Chemical, 2018. 262: p. 444-451.
    43. Meng, L., et al., 11-Mercaptoundecanoic acid capped gold nanoclusters as a fluorescent probe for specific detection of folic acid via a ratiometric fluorescence strategy. RSC advances, 2018. 8(17): p. 9327-9333.
    44. Chakravarty, S., et al., PVA-based nanobiosensor for ultrasensitive detection of folic acid by fluorescence quenching. Sensors and Actuators B: Chemical, 2016. 232: p. 243-250.
    45. Zhu, W., et al., Fabrication of fluorescent nitrogen-rich graphene quantum dots by tin (IV) catalytic carbonization of ethanolamine. RSC Advances, 2015. 5(74): p. 60085-60089.
    46. Du, F., et al., Development of sulfur doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe2+ and Fe3+ ions in oral ferrous gluconate samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020. 226: p. 117602-117611.
    47. Fan, K., et al., A chitosan-based fluorescent hydrogel for selective detection of Fe 2+ ions in gel-to-sol mode and turn-off fluorescence mode. Polymer Chemistry, 2019. 10(37): p. 5037-5043.
    48. Lu, M. and L. Zhou, One-step sonochemical synthesis of versatile nitrogen-doped carbon quantum dots for sensitive detection of Fe2+ ions and temperature in vitro. Materials Science and Engineering: C, 2019. 101: p. 352-359.
    49. Nawaz, H., et al., Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe2+ ions with naked eye and fluorescent dual modes. ACS Applied Materials & Interfaces, 2018. 10(2): p. 2114-2121.
    50. Zhang, Y.-Y., et al., A highly sensitive multifunctional sensor based on phenylene-acetylene for colorimetric detection of Fe2+ and ratiometric fluorescent detection of Cd2+ and Zn2+. Sensors and Actuators B: Chemical, 2018. 273: p. 1077-1084.
    51. Li, L.L., et al., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013. 5(10): p. 4015-4039.
    52. Zhang, Z.P., et al., Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science, 2012. 5(10): p. 8869-8890.
    53. Zhu, S.J., et al., Control the size and surface chemistry of graphene for the rising fluorescent materials. Chemical Communications, 2012. 48(38): p. 4527-4539.
    54. Novoselov, K.S. and A. Geim, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
    55. Geim, A.K., Graphene: status and prospects. Science, 2009. 324(5934): p. 1530-1534.
    56. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano Letters, 2008. 8(3): p. 902-907.
    57. Ananthanarayanan, A., et al., Facile Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe3+Sensing. Advanced Functional Materials, 2014. 24(20): p. 3021-3026.
    58. Benítez-Martínez, S. and M. Valcárcel, Graphene quantum dots in analytical science. TrAC Trends in Analytical Chemistry, 2015. 72: p. 93-113.
    59. Wang, D., J.F. Chen, and L. Dai, Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals. Particle & Particle Systems Characterization, 2015. 32(5): p. 515-523.
    60. Yan, Y., et al., Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Advanced Materials, 2019: p. e1808283- e1808304.
    61. Pan, D.Y., et al., Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Advanced Materials, 2010. 22(6): p. 734-738.
    62. Li, L., et al., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013. 5(10): p. 4015-4039.
    63. Novoa-De Leon, I.C., et al., Tuning the luminescence of nitrogen-doped graphene quantum dots synthesized by pulsed laser ablation in liquid and their use as a selective photoluminescence on-off-on probe for ascorbic acid detection. Carbon, 2019. 150: p. 455-464.
    64. Zhu, S., et al., Investigating the surface state of graphene quantum dots. Nanoscale, 2015. 7(17): p. 7927-7933.
    65. Medintz, I.L., et al., Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature Materials, 2010. 9(8): p. 676-684.
    66. Baker, S.N. and G.A. Baker, Luminescent Carbon Nanodots: Emergent Nanolights. Angewandte Chemie-International Edition, 2010. 49(38): p. 6726-6744.
    67. Shen, J.H., et al., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012. 48(31): p. 3686-3699.
    68. Li, H.T., et al., Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie-International Edition, 2010. 49(26): p. 4430-4434.
    69. Qu, D., et al., Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light-Science & Applications, 2015. 4: p. e364-e364.
    70. Peng, J., et al., Graphene quantum dots derived from carbon fibers. Nano Letters, 2012. 12(2): p. 844-849.
    71. Dong, Y., et al., One-step and high yield simultaneous preparation of single-and multi-layer graphene quantum dots from CX-72 carbon black. Journal of Materials Chemistry, 2012. 22(18): p. 8764-8766.
    72. Pan, D., et al., Cutting sp 2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. Journal of Materials Chemistry, 2012. 22(8): p. 3314-3318.
    73. Zhu, S., et al., Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications, 2011. 47(24): p. 6858-6860.
    74. Umrao, S., et al., Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: New platform for enzyme-free detection of hydrogen peroxide. Carbon, 2015. 81: p. 514-524.
    75. Shen, J., et al., One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New Journal of Chemistry, 2012. 36(1): p. 97-101.
    76. Ponomarenko, L., et al., Chaotic Dirac billiard in graphene quantum dots. Science, 2008. 320(5874): p. 356-358.
    77. Shen, J., et al., Facile preparation and upconversion luminescence of graphene quantum dots. Chemical Communications, 2011. 47(9): p. 2580-2582.
    78. Sun, P., et al., Exfoliation of graphite by dry ball milling with cellulose. Cellulose, 2014. 21(4): p. 2469-2478.
    79. Deng, M., et al., Graphene Quantum Dots: Efficient Mechanosynthesis, White-Light and Broad Linearly Excitation-Dependent Photoluminescence and Growth Inhibition on Bladder Cancer Cells. Dalton Transactions, 2020. 49(7), p. 2308-2316.
    80. Zhu, S.J., et al., Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angewandte Chemie-International Edition, 2013. 52(14): p. 3953-3957.
    81. Tsai, C., et al., Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon. Journal of Applied Physics, 1986. 59(8): p. 2998-3001.
    82. Lindley, R.A., et al., Plasma pretreatment of photoresist in an oxide etch process. 2001, U.S. Patent No. 6,326,307. Washington, DC: U.S. Patent and Trademark Office.
    83. Aronsson, B.O., J. Lausmaa, and B. Kasemo, Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. Journal of Biomedical Materials Research:, 1997. 35(1): p. 49-73.
    84. Lampe, T., S. Eisenberg, and E.R. Cabeo, Plasma surface engineering in the automotive industry—trends and future prospectives. Surface and Coatings Technology, 2003. 174: p. 1-7.
    85. Gawish, S., et al., The effect of low‐temperature plasma for improving wool and chitosan‐treated wool fabric properties. The Journal of the Textile Institute, 2011. 102(2): p. 180-188.
    86. Sarmadi, M. Advantages and disadvantages of plasma treatment of textile materials. in 21st International Symposium on Plasma Chemistry (ISPC 21), Sunday. 2013.
    87. Ostrikov, K., E. Neyts, and M. Meyyappan, Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids. Advances in Physics, 2013. 62(2): p. 113-224.
    88. Chiang, W.H., et al., Microplasmas for Advanced Materials and Devices. Advanced Materials, 2020. 32(18), p.1905508-1905530.
    89. Huang, X., et al., Fast microplasma synthesis of blue luminescent carbon quantum dots at ambient conditions. Plasma Processes and Polymers, 2015. 12(1): p. 59-65.
    90. Tachibana, K., Current status of microplasma research. IEEJ Transactions on Electrical and Electronic Engineering, 2006. 1(2): p. 145-155.
    91. Merche, D., et al., Synthesis and/or grafting of noble metal nanoparticles by microplasma and by atmospheric plasma torch. arXiv preprint arXiv:1802.02257, 2018.
    92. Mariotti, D. and R.M. Sankaran, Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 2010. 43(32): p. 323001-323022.
    93. Jun, M.E., B. Roy, and K.H. Ahn, “Turn-on” fluorescent sensing with “reactive” probes. Chemical Communications, 2011. 47(27): p. 7583-7601.
    94. Yoon, Z.S., et al., Evaluation of planarity and aromaticity in sapphyrin and inverted sapphyrin using a bidirectional NICS (Nucleus-Independent Chemical Shift) scan method. Chemical Communications, 2007(23): p. 2378-2380.
    95. Lodish, H., et al., Molecular cell biology. Macmillan, 2008.
    96. Gunnlaugsson, T., A.P. Davis, and M. Glynn, Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensors. Chemical Communications, 2001(24): p. 2556-2557.
    97. Jiao, Y., et al., Fluorescent sensing of fluoride in cellular system. Theranostics, 2015. 5(2): p. 173.
    99. Chung, Y.M., et al., Fluorescence modulation in anion sensing by introducing intramolecular H-bonding interactions in host–guest adducts. Chemical Communications, 2006(2): p. 186-188.
    100. Kim, Y.K., et al., Molecular recognition of anions through hydrogen bonding stabilization of anion− ionophore adducts: A novel trifluoroacetophenone-based binding motif. Organic Letters, 2003. 5(21): p. 4003-4006.
    101. Förster, T., Energy transport and fluorescence. Naturwissenschaften, 1946. 6: p. 166-175.
    102. Clegg, R.M., Fluorescence resonance energy transfer. Current Opinion in Biotechnology, 1995. 6(1): p. 103-110.
    103. Lakowicz, J., Principles of fluorescence spectroscopy. Springer Science. New York, 2006: p. 158-204.
    104. Nagai, T. and A. Miyawaki, A high-throughput method for development of FRET-based indicators for proteolysis. Biochemical and Biophysical Research Communications, 2004. 319(1): p. 72-77.
    105. Jares-Erijman, E.A. and T.M. Jovin, FRET imaging. Nature Biotechnology, 2003. 21(11): p. 1387.
    106. Freeman, R. and I. Willner, Optical molecular sensing with semiconductor quantum dots (QDs). Chemical Society Reviews, 2012. 41(10): p. 4067-4085.
    107. Park, K., et al., Detection of conformationally changed MBP using intramolecular FRET. Biochemical and Biophysical Research Communications, 2009. 388(3): p. 560-564.
    108. Grant, S.A., et al., Development of dual receptor biosensors: an analysis of FRET pairs. Biosensors and Bioelectronics, 2001. 16(4-5): p. 231-237.
    109. Suzuki, K., et al., Design of carbon dots photoluminescence through organo-functional silane grafting for solid-state emitting devices. Scientific Reports, 2017. 7(1): p. 5469-5480.
    110. Wegner, K.D., et al., Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitivity of time-resolved fret bioassays. ACS Applied Materials & Interfaces, 2013. 5(8): p. 2881-2892.
    111. Han, J., et al., A ratiometric pH reporter for imaging protein-dye conjugates in living cells. Journal of the American Chemical Society, 2009. 131(5): p. 1642-1643.
    112. Zhang, X., Y. Xiao, and X. Qian, A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angewandte Chemie International Edition, 2008. 47(42): p. 8025-8029.
    113. Srikun, D., et al., An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. Journal of the American Chemical Society, 2008. 130(14): p. 4596-4597.
    114. Xue, L., Q. Liu, and H. Jiang, Ratiometric Zn2+ fluorescent sensor and new approach for sensing Cd2+ by ratiometric displacement. Organic Letters, 2009. 11(15): p. 3454-3457.
    115. Santra, M., B. Roy, and K.H. Ahn, A “reactive” ratiometric fluorescent probe for mercury species. Organic Letters, 2011. 13(13): p. 3422-3425.
    116. Descalzo, A.B., et al., Coupling selectivity with sensitivity in an integrated chemosensor framework: design of a Hg2+-responsive probe, operating above 500 nm. Journal of the American Chemical Society, 2003. 125(12): p. 3418-3419.
    117. Naumann, D. and R. Meyers, Encyclopedia of analytical chemistry. John Wiley & Sons, Chichester, UK, 2000: p. 102-131.
    118. Selvin, P.R., The renaissance of fluorescence resonance energy transfer. Nature Structural & Molecular Biology, 2000. 7(9): p. 730-734.
    119. Chiang, W.-H., et al., Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Science and Technology, 2010. 19(3): p. 034011-034019.
    120. Wang, X., et al., Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids and Surfaces B: Biointerfaces, 2014. 122: p. 638-644.
    121. Dong, Y.Q., et al., Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 2012. 50(12): p. 4738-4743.
    122. Alizadeh, T. and M. Shokri, A new humidity sensor based upon graphene quantum dots prepared via carbonization of citric acid. Sensors and Actuators B: Chemical, 2016. 222: p. 728-734.
    123. Liu, S., et al., Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. Advanced Materials, 2012. 24(15): p. 2037-2041.
    124. Tan, K.-H., et al., Influence of Mg/CTAB ratio on the structural, physicochemical properties and catalytic activity of amorphous mesoporous magnesium silicate catalysts. RSC Advances, 2019. 9(66): p. 38760-38771.
    125. Yang, J.-S., D.Z. Pai, and W.-H. Chiang, Microplasma-enhanced synthesis of colloidal graphene quantum dots at ambient conditions. Carbon, 2019. 153: p. 315-319.
    126. Wang, Y., et al., Cu-Mn codoped ZnS quantum dots-based ratiometric fluorescent sensor for folic acid. Analytica Chimica Acta, 2018. 1040: p. 136-142.
    127. Tang, L., et al., Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano, 2014. 8(6): p. 6312-6320.
    128. Kumar, S., et al., One-step synthesis of N-doped graphene quantum dots from chitosan as a sole precursor using chemical vapor deposition. The Journal of Physical Chemistry C, 2018. 122(4): p. 2343-2349.

    無法下載圖示 全文公開日期 2025/07/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE