簡易檢索 / 詳目顯示

研究生: 張榕宸
Rong-Chen Jhang
論文名稱: 大氣常壓微電漿合成金奈米團簇應用於銅離子感測及表面增強拉曼散射
Microplasma Nanoengineering of Au Clusters for Copper Ion Sensing and Surface-Enhanced Raman Scattering Application
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 魏大欽
Ta-Chin Wei
劉沂欣
Yi-Hsin Liu
蕭偉文
Wei-Wen Hsiao
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 138
中文關鍵詞: 大氣常壓微電漿金奈米團簇光致發光感測表面增強拉曼散射
外文關鍵詞: Atmospheric-pressure microplasma, Au clusters, Photoluminescence sensing, Surface-enhacned Raman scattering
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅離子是調節人類中樞神經系統功能的重要元素,根據研究結果顯示不只阿茲海默症、帕金森症、威爾遜症、門克斯症等主要神經疾病,還有糖尿病和骨質疏鬆症都與銅離子濃度息息相關,因此使用精確和快速的方法監測銅離子濃度非常重要。而傳統的檢測方法通常耗時且操作複雜,所以光致發光傳感器因為操作簡單、靈敏度高和檢測限低而被視為一種很有前景的銅離子檢測方法,引起了研究學者們的極大興趣。表面增強拉曼散射是一種增強拉曼訊號的技術,可以對低濃度的分析物進行高靈敏度檢測。最近的研究中常使用貴重金屬奈米粒子作為表面增強拉曼散射的活性基材,利用電磁增強以及化學增強機制來提高增強效率。本研究提供了一種自下而上的方法,通過大氣常壓微電漿輔助法藉由調控金前驅物和半胱胺酸的莫爾濃度比合成具有多功能的發射光可調金奈米團簇,應用於光致發光傳感和表面增強拉曼散射。而金奈米團簇透過一系列材料鑑定後可以發現到金屬核的大小會影響光致發光的波長,並在雷射光激發下能夠產生表面電漿子共振的現象。對於銅離子的光致發光感測的部分,金奈米團簇和銅離子具有高親和力可形成金奈米團簇和銅離子的複合物以降低光致發光強度,進而推測出主要猝滅機製為靜態猝滅,並在優化的條件下可以達到13 nM濃度偵測極限。在表面增強拉曼散射的研究中而除金屬核大小,金奈米團簇表面含氫官能基能提供氫建和凡德瓦力來提升材料的吸附效能和電子遷移率,應用於羅丹明6G染劑與生物分子葉酸的偵測下可以達到10 nM和1 μM濃度偵測極限。因此本研究藉由微電漿提供了一種簡便、低反應時間和環保的方法合成具有高靈敏度和寬線性範圍的多功能應用的金奈米團簇並探討各應用的感測機制。


    The detection of copper ion is important for monitoring the central nervous diseases. However, conventional detection methods are usually time-consuming and involve complex operation. Recently, photoluminescent (PL) sensors have garnered great interest due to operational simplicity, high sensitivity, and low detection limits and have been reported as a promising method for copper ion detection. Moreover, surface enhanced Raman spectroscopy (SERS) is a powerful technique to perform highly sensitive detection of analytes at low concentrations. A recent study demonstrates that metal clusters with the core size less than 3 nm exhibit unique molecule-like electronic transition properties can be used for PL-based sensing and SERS-based applications. In this work, we report a bottom-up method to synthesize photoluminescent Au clusters at ambient conditions by atmospheric-pressure microplasma. The highly energetic electron and free radicals generated by microplasma can promote the growth of Au clusters in the liquid phase. The copper ion is the electron acceptor, the fluorescence of Au clusters is effectively quenched upon the addition of copper ion. As a result, a linear relationship between copper ion concentration and PL intensity ratio was obtained starting from 0.04-50 µM with a limit of detection (LoD) of 13 nM. In the SERS part, through control the charge transfer by controlling the fluorescence emission of Au clusters. The red-Au clusters show LoDs as low as 10 nM and 1 µM for R6G and folic acid, respectively. Overall, our work provides a facile and environmental-friendly synthesis of Au clusters for copper ion detection with high sensitivity, and wide linear range, and the uniform and sensitive SERS substrates.

    Abstract 摘要 致謝 Outline List of figures List of tables 1. Introduction 1.1 Clusters 1.1.1 Clusters properties 1.1.2 Synthesis method 1.1.3 Atmospheric pressure microplasma technology 1.2 Photoluminescence properties 1.2.1 Photoluminescence mechanisms 1.2.2 Photoluminescence application 1.2.3 Copper ion sensing 1.3 Surface enhanced Raman spectroscopy (SERS) 1.3.1 Introduction of Surface enhanced Raman spectroscopy 1.3.2 SERS mechanism 1.3.3 Introduction of SERS-based Folic acid detection 2. Experimental section 2.1 Materials and chemicals 2.2 Synthesis of Au monometallic clusters by microplasma 2.3 Metal ion selectivity measurements 2.4 Sensing Cu2+ 2.5 Preparation of the SERS substrate 2.6 Adsorption ability of Au clusters for R6G 2.7 Characterization 2.7.1 Ultraviolet-visible spectroscopy (UV-Vis) 2.7.2 Photoluminescence spectroscopy (PL) 2.7.3 Raman spectroscopy (Raman) 2.7.4 Transmission electron microscopy (TEM) 2.7.5 Scanning electron microscope (SEM) 2.7.6 X-ray diffractometer (XRD) 2.7.7 Fourier-transform infrared spectroscopy (FT-IR) 2.7.8 X-ray photoelectron spectroscope (XPS) 2.7.9 Thermogravimetric analysis (TGA) 2.7.10 Time-resolved photoluminescence (TRPL) 2.7.11 Zeta potential meter 2.7.12 Ultraviolet photoelectron spectroscopy (UPS) 3. Results and discussion 3.1 Experimental setup 3.2 Characterization 3.2.1 UV-Visible absorption spectroscopy 3.2.2 Photoluminescence properties 3.2.3 Scanning electron microscopy 3.2.4 Transmission electron microscopy 3.2.5 X-ray photoelectron spectroscopy 3.2.6 Fourier-transform infrared spectroscopy 3.2.7 Thermogravimetric analysis 3.2.9 Yield and quantum yield of Au clusters 3.3 Copper Ion Sensing 3.3.1 Metal ions selectivity 3.3.2 Optimization of photoluminescence-based copper ion sensing 3.3.3 Mechanism of Copper Ion Sensing for Au clusters 3.4 SERS technology for Au clusters to detect the R6G 3.4.1 Optimization of SERS to detect the R6G 3.4.2 Mechanism of SERS to detect the R6G 3.5 SERS technology for Au clusters to detect the Folic Acid 3.5.1 Optimization of SERS to detect the Folic Acid 3.5.2 Mechanism of SERS to detect the Folic Acid Conclusion References

    [1] D. Kurniawan, R.C. Jhang, K.K. Ostrikov, W.H. Chiang, Microplasma-tunable graphene quantum dots for ultrasensitive and selective detection of cancer and neurotransmitter biomarkers, ACS Applied Materials & Interfaces 13(29) (2021) 34572-34583.
    [2] X. Zhang, X. Chen, S. Kai, H.Y. Wang, J. Yang, F.G. Wu, Z. Chen, Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles, Analytical Chemistry 87(6) (2015) 3360-5.
    [3] M. Faraday, X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light, Philosophical Transactions of the Royal Society of London (147) (1857) 145-181.
    [4] A. Ayati, A. Ahmadpour, F.F. Bamoharram, B. Tanhaei, M. Manttari, M. Sillanpaa, A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant, Chemosphere 107 (2014) 163-174.
    [5] N. Elahi, M. Kamali, M.H. Baghersad, Recent biomedical applications of gold nanoparticles: A review, Talanta 184 (2018) 537-556.
    [6] Prateek, D. Singh, N. Singh, A. Garg, R.K. Gupta, Engineered thiol anchored Au-BaTiO3/PVDF polymer nanocomposite as efficient dielectric for electronic applications, Composites Science and Technology 174 (2019) 158-168.
    [7] J. Zhang, Y. Yuan, Y. Wang, F. Sun, G. Liang, Z. Jiang, S.-H. Yu, Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules, Nano Research 8(7) (2015) 2329-2339.
    [8] B. Paramanik, A. Patra, Fluorescent AuAg alloy clusters: synthesis and SERS applications, Journal of Materials Chemistry C 2(16) (2014) 3005-3012.
    [9] R. Jin, Quantum sized, thiolate-protected gold nanoclusters, Nanoscale 2(3) (2010) 343-362.
    [10] J. Zheng, C. Zhang, R.M. Dickson, Highly fluorescent, water-soluble, size-tunable gold quantum dots, Physical Review Letters 93(7) (2004) 077402.
    [11] B. Hemmateenejad, F. Shakerizadeh-shirazi, F. Samari, BSA-modified gold nanoclusters for sensing of folic acid, Sensors and Actuators B: Chemical 199 (2014) 42-46.
    [12] O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson, Critical size for the observation of quantum confinement in optically excited gold clusters, Journal of the American Chemical Society 132(1) (2010) 16-17.
    [13] D. Mishra, F. Aldeek, E. Lochner, G. Palui, B. Zeng, S. Mackowski, H. Mattoussi, Aqueous growth of gold clusters with tunable fluorescence using photochemically modified lipoic acid-based ligands, Langmuir 32(25) (2016) 6445-6458.
    [14] X. Bai, S. Xu, L. Wang, Full-range pH stable Au-clusters in nanogel for confinement-enhanced emission and improved sulfide sensing in living cells, Analytical Chemistry 90(5) (2018) 3270-3275.
    [15] S.A. Bogh, M.R. Carro-Temboury, C. Cerretani, S.M. Swasey, S.M. Copp, E.G. Gwinn, T. Vosch, Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster, Methods and Applications in Fluorescence 6(2) (2018) 024004.
    [16] A. Mathew, T. Pradeep, Noble metal clusters: Applications in energy, environment, and biology, Particle & Particle Systems Characterization 31(10) (2014) 1017-1053.
    [17] Y. Ma, L. Shi, F. Liu, Y. Zhang, Y. Pang, X. Shen, Self-assembled thixotropic silver cluster hydrogel for anticancer drug release, Chemical Engineering Journal 362 (2019) 650-657.
    [18] D.M. Chevrier, A. Chatt, P. Zhang, Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review, Journal of Nanophotonics 6(1) (2012) 064504.
    [19] D.K. Maiti, S. Roy, A. Baral, A. Banerjee, A fluorescent gold-cluster containing a new three-component system for white light emission through a cascade of energy transfer, Journal of Materials Chemistry C 2(32) (2014) 6574-6581.
    [20] Y. Li, Q.L. Wen, A.Y. Liu, Y. Long, P. Liu, J. Ling, Z.T. Ding, Q.E. Cao, One-pot synthesis of green-emitting gold nanoclusters as a fluorescent probe for determination of 4-nitrophenol, Mikrochim Acta 187(2) (2020) 106.
    [21] C. Zhu, Q. Zhao, D. Huo, X. Hu, X. Wang, Electrodeposition of rough gold nanoarrays for surface-enhanced Raman scattering detection, Materials Chemistry and Physics 263 (2021).
    [22] G. Pramanik, J. Humpolickova, J. Valenta, P. Kundu, S. Bals, P. Bour, M. Dracinsky, P. Cigler, Gold nanoclusters with bright near-infrared photoluminescence, Nanoscale 10(8) (2018) 3792-3798.
    [23] S.A. Diaz, D.A. Hastman, I.L. Medintz, E. Oh, Understanding energy transfer with luminescent gold nanoclusters: a promising new transduction modality for biorelated applications, Journal of Materials Chemistry B 5(39) (2017) 7907-7926.
    [24] G. Carotenuto, L. Nicolais, Size-controlled synthesis of thiol-derivatized gold clusters, Journal of Materials Chemistry 13(5) (2003) 1038-1041.
    [25] M.A.E. Francos, R. Badía-Laíño, M.E. Díaz-García, Fluorescence sensitization of gold-glutathione nanoclusters by aqueous solutions of sodium and potassium ions, Microchimica Acta 182(9-10) (2015) 1591-1598.
    [26] R. Zhou, M. Shi, X. Chen, M. Wang, H. Chen, Atomically monodispersed and fluorescent sub-nanometer gold clusters created by biomolecule-assisted etching of nanometer-sized gold particles and rods, Chemistry 15(19) (2009) 4944-4951.
    [27] M.A. Habeeb Muhammed, P.K. Verma, S.K. Pal, A. Retnakumari, M. Koyakutty, S. Nair, T. Pradeep, Luminescent quantum clusters of gold in bulk by albumin-induced core etching of nanoparticles: metal ion sensing, metal-enhanced luminescence, and biolabeling, Chemistry 16(33) (2010) 10103-10112.
    [28] H. Duan, S. Nie, Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters, Journal of the American Chemical Society 129(9) (2007) 2412-2413.
    [29] L. Zhu, Y. Zeng, M. Teubner, B. Grimm-Lebsanft, A.R. Ziefuß, C. Rehbock, M.A. Rübhausen, S. Barcikowski, W.J. Parak, I. Chakraborty, Surface engineering of gold nanoclusters protected with 11-mercaptoundecanoic acid for photoluminescence sensing, ACS Applied Nano Materials 4(3) (2021) 3197-3203.
    [30] Y. Yue, T.Y. Liu, H.W. Li, Z. Liu, Y. Wu, Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions, Nanoscale 4(7) (2012) 2251-4.
    [31] H. Liu, G. Yang, E. Abdel-Halim, J.-J. Zhu, Highly selective and ultrasensitive detection of nitrite based on fluorescent gold nanoclusters, Talanta 104 (2013) 135-139.
    [32] H. Liu, G. Yang, E.S. Abdel-Halim, J.J. Zhu, Highly selective and ultrasensitive detection of nitrite based on fluorescent gold nanoclusters, Talanta 104 (2013) 135-139.
    [33] R. Foest, M. Schmidt, K. Becker, Microplasmas, an emerging field of low-temperature plasma science and technology, International Journal of Mass Spectrometry 248(3) (2006) 87-102.
    [34] Y.-J. Yeh, W.-H. Chiang, Ag microplasma-engineered nanoassemblies on cellulose papers for surface-enhanced Raman scattering and catalytic nitrophenol reduction, ACS Applied Nano Materials (2021).
    [35] B.A. Niemira, Cold plasma decontamination of foods, Annual Review of Food Science and Technology 3 (2012) 125-142.
    [36] J.J. Shi, M.G. Kong, Evolution of discharge structure in capacitive radio-frequency atmospheric microplasmas, Physical Review Letters 96(10) (2006) 105009.
    [37] D. Mariotti, R.M. Sankaran, Microplasmas for nanomaterials synthesis, Journal of Physics D: Applied Physics 43(32) (2010).
    [38] F. Zu, F. Yan, Z. Bai, J. Xu, Y. Wang, Y. Huang, X. Zhou, The quenching of the fluorescence of carbon dots: A review on mechanisms and applications, Microchimica Acta 184(7) (2017) 1899-1914.
    [39] Z.S. Kardar, F. Shemirani, R. Zadmard, Determination of iron(II) and iron(III) via static quenching of the fluorescence of tryptophan-protected copper nanoclusters, Microchimica Acta 187(1) (2020) 81.
    [40] P.P.H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, R.W. Murray, Dynamic and static quenching of fluorescence by 1− 4 nm diameter gold monolayer-protected clusters, The Journal of Physical Chemistry B 110(10) (2006) 4637-4644.
    [41] Y. Chen, W. Li, Y. Wang, X. Yang, J. Chen, Y. Jiang, C. Yu, Q. Lin, Cysteine-directed fluorescent gold nanoclusters for the sensing of pyrophosphate and alkaline phosphatase, Journal of Materials Chemistry C 2(20) (2014).
    [42] X. Ma, Z. Wang, S. He, J. Zhao, X. Lai, J. Xu, L-Cysteine modified gold nanoparticles for tube-based fluorometric determination of mercury(II) ions, Microchimica Acta 186(9) (2019) 632.
    [43] F. Wen, Y. Dong, L. Feng, S. Wang, S. Zhang, X. Zhang, Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing, Analytical Chemistry 83(4) (2011) 1193-1196.
    [44] J.Y. Tai, K.H. Leong, P. Saravanan, S.T. Tan, W.C. Chong, L.C. Sim, Facile green synthesis of fingernails derived carbon quantum dots for Cu2+ sensing and photodegradation of 2,4-dichlorophenol, Journal of Environmental Chemical Engineering 9(1) (2021).
    [45] C. Cheng, Y. Huang, X. Tian, B. Zheng, Y. Li, H. Yuan, D. Xiao, S. Xie, M.M. Choi, Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+, Analytical Chemistry 84(11) (2012) 4754-4759.
    [46] D. Chen, M. Xu, W. Wu, S. Li, Multi-color fluorescent carbon dots for wavelength-selective and ultrasensitive Cu2+ sensing, Journal of Alloys and Compounds 701 (2017) 75-81.
    [47] H.H. Deng, L.N. Zhang, S.B. He, A.L. Liu, G.W. Li, X.H. Lin, X.H. Xia, W. Chen, Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu(2+) sensing, Biosensors & Bioelectronics 65 (2015) 397-403.
    [48] P. Ndokoye, J. Ke, J. Liu, Q. Zhao, X. Li, L-cysteine-modified gold nanostars for SERS-based copper ions detection in aqueous media, Langmuir 30(44) (2014) 13491-13497.
    [49] L.J. Xu, Z.C. Lei, J. Li, C. Zong, C.J. Yang, B. Ren, Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity, Journal of the American Chemical Society 137(15) (2015) 5149-5154.
    [50] H. Yilmaz, D. Yilmaz, I.C. Taskin, M. Culha, Pharmaceutical applications of a nanospectroscopic technique: Surface-enhanced Raman spectroscopy, Advanced Drug Delivery Reviews 184 (2022) 114184.
    [51] S. Lohumi, M.S. Kim, J. Qin, B.-K. Cho, Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials, Trends in Analytical Chemistry 93 (2017) 183-198.
    [52] D. Huang, J. Zhao, M. Wang, S. Zhu, Snowflake-like gold nanoparticles as SERS substrates for the sensitive detection of organophosphorus pesticide residues, Food Control 108 (2020).
    [53] B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, SERS: Materials, applications, and the future, Materials Today 15(1-2) (2012) 16-25.
    [54] G. Zheng, L. Polavarapu, L.M. Liz-Marzan, I. Pastoriza-Santos, J. Perez-Juste, Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering, Chemical Communications 51(22) (2015) 4572-4575.
    [55] H.J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N.J. Fullwood, B. Gardner, P.L. Martin-Hirsch, Using Raman spectroscopy to characterize biological materials, Nature protocols 11(4) (2016) 664-687.
    [56] M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters 26(2) (1974) 163-166.
    [57] J.H. Hooijschuur, M.F.C. Verkaaik, G.R. Davies, F. Ariese, Will Raman meet bacteria on Mars? An overview of the optimal Raman spectroscopic techniques for carotenoid biomarkers detection on mineral backgrounds, Netherlands Journal of Geosciences - Geologie en Mijnbouw 95(2) (2015) 141-151.
    [58] A.I. Perez-Jimenez, D. Lyu, Z. Lu, G. Liu, B. Ren, Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments, Chemical Science 11(18) (2020) 4563-4577.
    [59] S. Nivaz, R. Geethalakshmi, G. Lekshmi, D. Surendhiran, C.M. Hussain, A.R. Sirajunnisa, Utilization of Raman spectroscopy in nanomaterial/bionanomaterial detection, Handbook of Microbial Nanotechnology (2022) 145-156.
    [60] T. Dey, Microplastic pollutant detection by surface enhanced Raman spectroscopy (SERS): a mini-review, Nanotechnology for Environmental Engineering (2022) 1-8.
    [61] S. Peiris, J. McMurtrie, H.-Y. Zhu, Metal nanoparticle photocatalysts: emerging processes for green organic synthesis, Catalysis Science & Technology 6(2) (2016) 320-338.
    [62] C. Zhu, Q. Zhao, X. Wang, Z. Li, X. Hu, Ag-nanocubes/graphene-oxide/Au-nanoparticles composite film with highly dense plasmonic hotspots for surface-enhanced Raman scattering detection of pesticide, Microchemical Journal 165 (2021).
    [63] G.C. Schatz, M.A. Young, R.P.V. Duyne, Electromagnetic mechanism of SERS, Surface-enhanced Raman scattering (2006) 19-45.
    [64] F.L. Deepak, Metal nanoparticles and clusters: Advances in synthesis, properties and applications, (2017).
    [65] A.Y. Zhu, A.I. Kuznetsov, B. Luk’yanchuk, N. Engheta, P. Genevet, Traditional and emerging materials for optical metasurfaces, Nanophotonics 6(2) (2017) 452-471.
    [66] E.G. Graham, C.M. Macneill, N.H. Levi-Polyachenko, Review of metal, carbon and polymer nanoparticles for infrared photothermal therapy, Nano LIFE 03(03) (2013).
    [67] E. Le Ru, P. Etchegoin, Principles of surface-enhanced Raman spectroscopy: and related plasmonic effects, (2008).
    [68] S. Kumar, P. Kumar, A. Das, C.S. Pathak, Surface-enhanced raman scattering: Introduction and applications, Recent Advances in Nanophotonics-Fundamentals and Applications (2020) 1-24.
    [69] L. Jensen, C.M. Aikens, G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering, Chemical Society Reviews 37(5) (2008) 1061-1073.
    [70] S. Fateixa, H.I. Nogueira, T. Trindade, Hybrid nanostructures for SERS: materials development and chemical detection, Physical Chemistry Chemical Physics 17(33) (2015) 21046-21071.
    [71] L. Zhang, Q. Zhao, Z. Jiang, J. Shen, W. Wu, X. Liu, Q. Fan, W. Huang, Recent progress of SERS nanoprobe for pH detecting and its application in biological imaging, Biosensors (Basel) 11(8) (2021).
    [72] H. Yang, H. Hu, Z. Ni, C.K. Poh, C. Cong, J. Lin, T. Yu, Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces, Carbon 62 (2013) 422-429.
    [73] R. Guzel, Z. Ustundag, H. Eksi, S. Keskin, B. Taner, Z.G. Durgun, A.A. Turan, A.O. Solak, Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules, The Journal of Colloid and Interface Science 351(1) (2010) 35-42.
    [74] J.J. Castillo, T. Rindzevicius, C.E. Rozo, A. Boisen, Adsorption and vibrational study of folic acid on gold nanopillar structures using surface-enhanced Raman scattering spectroscopy, Nanomaterials and Nanotechnology 5 (2015).
    [75] R.A.R. Teixeira, F.R.A. Lima, P.C. Silva, L.A.S. Costa, A.C. Sant'Ana, Tracking chemical interactions of folic acid on gold surface by SERS spectroscopy, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 223 (2019) 117305.
    [76] J.J. Castillo, T. Rindzevicius, K. Wu, C.E. Rozo, M.S. Schmidt, A. Boisen, Silver-capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory, Journal of Raman Spectroscopy 46(11) (2015) 1087-1094.
    [77] S.L. Fereja, P. Li, J. Guo, Z. Fang, Z. Zhang, Z. Zhuang, X. Zhang, K. Liu, W. Chen, Silver-enhanced fluorescence of bimetallic Au/Ag nanoclusters as ultrasensitive sensing probe for the detection of folic acid, Talanta 233 (2021) 122469.
    [78] W. Ren, Y. Fang, E. Wang, A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids, ACS Nano 5(8) (2011) 6425-6433.
    [79] J. Yang, X. Tan, W.C. Shih, M.M. Cheng, A sandwich substrate for ultrasensitive and label-free SERS spectroscopic detection of folic acid / methotrexate, Biomed Microdevices 16(5) (2014) 673-679.
    [80] M.E.A. Warwick, G. Carraro, E. Toniato, A. Gasparotto, C. Maccato, D. Barreca, XPS analysis of Fe2O3-TiO2-Au nanocomposites prepared by a plasma-assisted route, Surface Science Spectra 23(1) (2016) 61-69.
    [81] R. Jin, C. Zeng, M. Zhou, Y. Chen, Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities, Chemical Reviews 116(18) (2016) 10346-10413.
    [82] A.M. Brouwer, Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report), Pure and Applied Chemistry 83(12) (2011) 2213-2228.
    [83] C.V. Durgadas, C.P. Sharma, K. Sreenivasan, Fluorescent gold clusters as nanosensors for copper ions in live cells, Analyst 136(5) (2011) 933-940.
    [84] G. Zhang, Y. Li, J. Xu, C. Zhang, S. Shuang, C. Dong, M.M.F. Choi, Glutathione-protected fluorescent gold nanoclusters for sensitive and selective detection of Cu2+, Sensors and Actuators B: Chemical 183 (2013) 583-588.
    [85] Y. Liu, D. Ding, Y. Zhen, R. Guo, Amino acid-mediated 'turn-off/turn-on' nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine, Biosens Bioelectron 92 (2017) 140-146.
    [86] X.J. Li, Y. Li, A.Y. Liu, Y.H. Tan, J. Ling, Z.T. Ding, Q.E. Cao, Highly selective visual sensing of copper based on fluorescence enhanced glutathione-Au nanoclusters, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 224 (2020) 117472.
    [87] C.P. Liu, T.H. Wu, C.Y. Liu, H.J. Cheng, S.Y. Lin, Interactions of nitroxide radicals with dendrimer-entrapped Au8-clusters: a fluorescent nanosensor for intracellular imaging of ascorbic acid, Journal of Materials Chemistry B 3(2) (2015) 191-197.
    [88] B. Aswathy, G. Sony, Cu2+ modulated BSA–Au nanoclusters: A versatile fluorescence turn-on sensor for dopamine, Microchemical Journal 116 (2014) 151-156.
    [89] S. Raut, R. Rich, R. Fudala, S. Butler, R. Kokate, Z. Gryczynski, R. Luchowski, I. Gryczynski, Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores, Nanoscale 6(1) (2014) 385-391.
    [90] A. Lamberti, A. Virga, A. Chiadò, A. Chiodoni, K. Bejtka, P. Rivolo, F. Giorgis, Ultrasensitive Ag-coated TiO2 nanotube arrays for flexible SERS-based optofluidic devices, Journal of Materials Chemistry C 3(26) (2015) 6868-6875.
    [91] M. Ujihara, N.M. Dang, T. Imae, Surface-enhanced resonance Raman scattering of rhodamine 6G in dispersions and on films of confeito-like Au nanoparticles, Sensors (Basel) 17(11) (2017).
    [92] T. Zhang, F. Zhou, L. Hang, Y. Sun, D. Liu, H. Li, G. Liu, X. Lyu, C. Li, W. Cai, Y. Li, Controlled synthesis of sponge-like porous Au–Ag alloy nanocubes for surface-enhanced Raman scattering properties, Journal of Materials Chemistry C 5(42) (2017) 11039-11045.
    [93] F. Zhou, Y. Liu, H. Wang, Y. Wei, G. Zhang, H. Ye, M. Chen, D. Ling, Au-nanorod-clusters patterned optical fiber SERS probes fabricated by laser-induced evaporation self-assembly method, Optics Express 28(5) (2020) 6648-6662.
    [94] E. Kirubha, P. Palanisamy, Green synthesis, characterization of Au–Ag core–shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies, Advances in Natural Sciences: Nanoscience and Nanotechnology 5(4) (2014) 045006.
    [95] C.D.G. Adam M. Schwartzberg, Abraham Wolcott, Chad E. Talley, Thomas R. Huser, Roberto Bogomolni, and Jin Z. Zhang, Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate, The Journal of Physical Chemistry B (2004).
    [96] R. Ahmad, N. Felidj, L. Boubekeur-Lecaque, S. Lau-Truong, S. Gam-Derouich, P. Decorse, A. Lamouri, C. Mangeney, Water-soluble plasmonic nanosensors with synthetic receptors for label-free detection of folic acid, Chemical Communications 51(47) (2015) 9678-9681.
    [97] Z.J. Sun, Z.W. Jiang, Y.F. Li, Poly(dopamine) assisted in situ fabrication of silver nanoparticles/metal–organic framework hybrids as SERS substrates for folic acid detection, RSC Advances 6(83) (2016) 79805-79810.
    [98] N.S. Jha, N. Kishore, Thermodynamic studies on the interaction of folic acid with bovine serum albumin, The Journal of Chemical Thermodynamics 43(5) (2011) 814-821.

    無法下載圖示 全文公開日期 2027/07/26 (校內網路)
    全文公開日期 2027/07/26 (校外網路)
    全文公開日期 2027/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE