簡易檢索 / 詳目顯示

研究生: 王善猷
Shan-Yu Wang
論文名稱: 可控制奈米金屬粒子/石墨烯奈米帶複合材料製備及其表面增強拉曼光譜應用
Controllable Synthesis of Metal Nanoparticle/Graphene Nanoribbon Composites and Application for Surface-enhanced Raman Scattering Detection
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 江志強
Jyh-Chiang Jiang
何國川
Kuo-Chuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 81
中文關鍵詞: 石墨烯奈米帶金屬奈米粒子表面增強拉曼散射
外文關鍵詞: Graphene nanoribbon, metal nanoparticle, SERS
相關次數: 點閱:226下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • In this study, we have developed a facile and effective wet-chemistry-based oxidative process for producing GNRs by lengthwise cutting and unraveling of CNT side walls with a very low usage of concentrated sulfuric acid. By introducing KNO3 in the starting CNT pretreatment, the yield of GNRs can reach nearly 100%. In addition, it is possible to reduce 90% usage of the concentrated H2SO4. The experimental findings presented in this study show that engineering of the inter- and intratube intercalation of CNTs by suitable intercalation molecules is a key factor to achieve not only high-yield GNR synthesis but also low usage of concentrated H2SO4.
    In addition, we also present a controllable synthesis of Ag/GNR composites with two topics: (i) different functionality of Ag/MWGNRs (ii) different width of Ag/GNRs at the same oxidation degrees. These two syntheses of topics were by a two-step reaction route. First, we synthesized and functionalized GNRs by a facile carbon nanotube chemical unzipping. The functionalization of GNRs could be controlled, confirming by XPS characterizations. Second, Ag NPs can be decorated onto the GNRs surface through a wet-chemical-based redox reaction. Detailed hybrid materials characterizations including UV-Vis spectroscopy show that Ag/GNR composites were successfully synthesized in our experiment. We further systematic studied the Raman response of the Ag/GNR composites using Rhodamine 6G (R6G) as the Raman probe. The result indicates that the Ag/GNR composites show superior SERS performance with low detection concentration of 10-9 M of R6G and high enhance factor (EF) of 3.62×107.

    Abstract I Acknowledgements II Content IV List of figure VII List of table XI 1. Introduction 1 1.1 Introduction of graphene nanoribbons (GNRs) 1 1.1.1 The unique property of GNRs 1 1.1.2 Synthesis of GNRs 4 1.2 Metal nanoparticle decorated on GNRs 9 1.2.1 Synthesis method of graphene-nanoparticle hybrid materials 9 1.2.2 Synthesis of metal nanoparticle/GNRs 19 1.3 Surface-enhanced Raman scattering (SERS) 19 1.3.1 SERS mechanism 21 1.3.2 Graphene as substrate for SERS detection 24 1.3.3 Enhance factor for SERS detection 25 2. Experimental methods 27 2.1 Synthesis of GNRs 27 2.1.1 Chemicals 27 2.1.2 Pretreatment 27 2.1.3 Oxidative CNT unzipping 27 2.1.4 Purification 28 2.2 Silver nanoparticle (Ag NPs) decorated on GNRs 28 2.2.1 Chemicals 28 2.2.2 Wet-chemical redox reaction 28 2.2.3 Purification 29 2.2.4 SERS analysis 29 2.3 Characterization 29 2.3.1 Scanning electron microscope (SEM) 29 2.3.2 Transmission electron microscope (TEM) 29 2.3.3 X-ray photoemission spectra (XPS) 29 2.3.4 X-ray diffraction (XRD) 30 2.3.5 Ultraviolet–visible spectroscopy (UV-vis) 30 2.3.6 Raman spectroscopy 30 3. Results and discussion 31 3.1 Characterization of pristine CNTs 31 3.1.1 Raman spectroscopy 31 3.1.2 X-ray diffraction (XRD) 32 3.1.3 X-ray photoelectron spectroscopy (XPS) 33 3.2 Characterization of MWGNRs with different functionality 34 3.2.1 Scanning electron microscope (SEM) 34 3.2.2 X-ray diffraction (XRD) 35 3.2.3 X-ray photoelectron spectroscopy (XPS) 37 3.3 Characterization of GNRs with different width at the same level oxidation 39 3.3.1 Transmission electron microscope (TEM) 39 3.3.2 X-ray diffraction (XRD) 39 3.3.3 X-ray photoelectron spectroscopy (XPS) 41 3.4 Ag/MWGNRs with different surface functionality 43 3.4.1 Transmission electron microscope (TEM) 43 3.4.2 Ultraviolet–visible spectroscopy (UV-vis) 43 3.4.3 X-ray photoelectron spectroscopy (XPS) 44 3.5 Ag/GNRs with different width GNRs 46 3.5.1 Ultraviolet–visible spectroscopy (UV-vis) 46 3.5.2 X-ray photoelectron spectroscopy (XPS) 47 3.6 Surface-enhanced Raman scattering detection 48 3.6.1 Ag/MWGNRs with different surface functionality 48 3.6.2 Ag/GNRs with different width GNRs 51 4. Conclusion 53 5. Reference 54

    1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
    2. Schwierz, F., Electronics: Industry-compatible graphene transistors. Nature, 2011. 472(7341): p. 41-42.
    3. Ma, L., J. Wang, and F. Ding, Recent progress and challenges in graphene nanoribbon synthesis. ChemPhysChem, 2013. 14(1): p. 47-54.
    4. Han, T.-H., et al., Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photonics, 2012. 6(2): p. 105-110.
    5. Byun, S.-J., et al., Graphenes converted from polymers. The Journal of Physical Chemistry Letters, 2011. 2(5): p. 493-497.
    6. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 2010. 5(8): p. 574-578.
    7. Yan, Z., et al., Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS nano, 2012. 6(10): p. 9110-9117.
    8. Schwierz, F., Graphene transistors. Nature nanotechnology, 2010. 5(7): p. 487-496.
    9. Jung, I., H.Y. Jang, and S. Park, Direct growth of graphene nanomesh using a Au nano-network as a metal catalyst via chemical vapor deposition. Applied Physics Letters, 2013. 103(2): p. 023105.
    10. Yang, J., et al., Graphene nanomesh: new versatile materials. Nanoscale, 2014. 6(22): p. 13301-13313.
    11. Kato, T. and R. Hatakeyama, Site-and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nature nanotechnology, 2012. 7(10): p. 651-656.
    12. Han, M.Y., et al., Energy band-gap engineering of graphene nanoribbons. Physical review letters, 2007. 98(20): p. 206805.
    13. Liu, J., et al., Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells. Advanced Materials, 2014. 26(5): p. 786-790.
    14. Huang, Y.-X., et al., Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chemical Communications, 2011. 47(20): p. 5795-5797.
    15. Ismail, N.S., et al., Development of non-enzymatic electrochemical glucose sensor based on graphene oxide nanoribbon–gold nanoparticle hybrid. Electrochimica Acta, 2014. 146: p. 98-105.
    16. Rafiee, M.A., et al., Graphene nanoribbon composites. Acs Nano, 2010. 4(12): p. 7415-7420.
    17. Wang, X., et al., Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical review letters, 2008. 100(20): p. 206803.
    18. Kosynkin, D.V., et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009. 458(7240): p. 872-876.
    19. Jiao, L., et al., Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009. 458(7240): p. 877-880.
    20. Elías, A.L., et al., Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano letters, 2009. 10(2): p. 366-372.
    21. Parashar, U.K., et al., Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes. Nanoscale, 2011. 3(9): p. 3876-3882.
    22. Cano-Márquez, A.G., et al., Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano letters, 2009. 9(4): p. 1527-1533.
    23. Xie, L., et al., Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties. Journal of the American Chemical Society, 2011. 133(27): p. 10394-10397.
    24. Jiao, L., et al., Facile synthesis of high-quality graphene nanoribbons. Nature nanotechnology, 2010. 5(5): p. 321-325.
    25. Li, D., et al., Processable aqueous dispersions of graphene nanosheets. Nature nanotechnology, 2008. 3(2): p. 101-105.
    26. Wei, D., et al., Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. Journal of the American Chemical Society, 2009. 131(31): p. 11147-11154.
    27. Sprinkle, M., et al., Scalable templated growth of graphene nanoribbons on SiC. Nature Nanotechnology, 2010. 5(10): p. 727-731.
    28. Campos-Delgado, J., et al., Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano letters, 2008. 8(9): p. 2773-2778.
    29. Higginbotham, A.L., et al., Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS nano, 2010. 4(4): p. 2059-2069.
    30. Kong, B.-S., J. Geng, and H.-T. Jung, Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun., 2009(16): p. 2174-2176.
    31. Muszynski, R., B. Seger, and P.V. Kamat, Decorating graphene sheets with gold nanoparticles. The Journal of Physical Chemistry C, 2008. 112(14): p. 5263-5266.
    32. Goncalves, G., et al., Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials, 2009. 21(20): p. 4796-4802.
    33. Hong, W., et al., Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. The Journal of Physical Chemistry C, 2010. 114(4): p. 1822-1826.
    34. Tien, H.-W., et al., The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon, 2011. 49(5): p. 1550-1560.
    35. Qiu, J.-D., et al., Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. The Journal of Physical Chemistry C, 2011. 115(31): p. 15639-15645.
    36. Li, Y., et al., Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 2010. 48(4): p. 1124-1130.
    37. Lin, J., et al., Iron Oxide Nanoparticle and Graphene Nanoribbon Composite as an Anode Material for High‐Performance Li‐Ion Batteries. Advanced Functional Materials, 2014. 24(14): p. 2044-2048.
    38. Yang, X., et al., Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Advances, 2012. 2(23): p. 8821-8826.
    39. Liang, Y., et al., TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Research, 2010. 3(10): p. 701-705.
    40. Lee, J., et al., Single beam acoustic trapping. Applied physics letters, 2009. 95(7): p. 073701.
    41. Son, D.I., et al., Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nature nanotechnology, 2012. 7(7): p. 465-471.
    42. Lin, J., et al., Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS nano, 2013. 7(7): p. 6001-6006.
    43. Su, D., H.-J. Ahn, and G. Wang, SnO 2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chemical Communications, 2013. 49(30): p. 3131-3133.
    44. Deng, S., et al., Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. Journal of the American Chemical Society, 2012. 134(10): p. 4905-4917.
    45. Li, B., et al., Cu 2 O@ reduced graphene oxide composite for removal of contaminants from water and supercapacitors. Journal of Materials Chemistry, 2011. 21(29): p. 10645-10648.
    46. Peng, L., et al., Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano letters, 2013. 13(5): p. 2151-2157.
    47. He, Y., et al., Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS nano, 2012. 7(1): p. 174-182.
    48. Zhou, G., et al., Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS nano, 2012. 6(4): p. 3214-3223.
    49. Yang, H., et al., NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell. The Journal of Physical Chemistry C, 2011. 115(24): p. 12209-12215.
    50. Chen, D., H. Feng, and J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chemical reviews, 2012. 112(11): p. 6027-6053.
    51. Xu, C., X. Wang, and J. Zhu, Graphene− metal particle nanocomposites. The Journal of Physical Chemistry C, 2008. 112(50): p. 19841-19845.
    52. Chen, Y., et al., Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. Journal of Materials Chemistry, 2011. 21(21): p. 7604-7611.
    53. Gao, W., et al., New insights into the structure and reduction of graphite oxide. Nature chemistry, 2009. 1(5): p. 403-408.
    54. Zhuo, Q., et al., Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature. Inorganic chemistry, 2013. 52(6): p. 3141-3147.
    55. Jain, P.K., et al., Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of chemical research, 2008. 41(12): p. 1578-1586.
    56. Eustis, S. and M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006. 35(3): p. 209-217.
    57. Duch, M.C., et al., Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano letters, 2011. 11(12): p. 5201-5207.
    58. Huang, J., et al., Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale, 2010. 2(12): p. 2733-2738.
    59. Jasuja, K., et al., Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic, electrical, and raman properties. The Journal of Physical Chemistry Letters, 2010. 1(12): p. 1853-1860.
    60. Han, Y., et al., Synthesis of silver nanoparticles on reduced graphene oxide under microwave irradiation with starch as an ideal reductant and stabilizer. Applied Surface Science, 2013. 266: p. 188-193.
    61. Kundu, P., et al., Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: synergistic co-reduction mechanism and high catalytic activity. Chemistry of Materials, 2011. 23(11): p. 2772-2780.
    62. Chen, S.Q. and Y. Wang, Microwave-assisted synthesis of a Co 3 O 4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. Journal of Materials Chemistry, 2010. 20(43): p. 9735-9739.
    63. Tsuji, M., et al., Synthesis of gold nanorods and nanowires by a microwave–polyol method. Materials Letters, 2004. 58(17): p. 2326-2330.
    64. Bai, S. and X. Shen, Graphene–inorganic nanocomposites. Rsc Advances, 2012. 2(1): p. 64-98.
    65. Zhou, Y., et al., Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials, 2009. 21(13): p. 2950-2956.
    66. Zou, W., et al., Depositing ZnO nanoparticles onto graphene in a polyol system. Materials Chemistry and Physics, 2011. 125(3): p. 617-620.
    67. Shen, J., et al., Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites. Nano Research, 2011. 4(8): p. 795-806.
    68. Zhou, K., et al., Preparation and Application of Mediator‐Free H2O2 Biosensors of Graphene‐Fe3O4 Composites. Electroanalysis, 2011. 23(4): p. 862-869.
    69. Park, S.-K., et al., A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO 2 nanoparticles onto graphene for lithium ion batteries. Journal of Materials Chemistry, 2012. 22(6): p. 2520-2525.
    70. Wu, Z.-S., et al., Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS nano, 2010. 4(6): p. 3187-3194.
    71. Wu, Z.-S., et al., Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 2012. 1(1): p. 107-131.
    72. Ren, L., et al., One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method. Applied Surface Science, 2011. 258(3): p. 1132-1138.
    73. Yan, S., et al., Hydrothermal synthesis of CdS/functionalized graphene sheets nanocomposites. Journal of Alloys and Compounds, 2013. 570: p. 65-69.
    74. Xue, L., et al., Hydrothermal synthesis of graphene–ZnS quantum dot nanocomposites. Materials letters, 2011. 65(2): p. 198-200.
    75. Su, Y., et al., A one-pot synthesis of reduced graphene oxide–Cu 2 S quantum dot hybrids for optoelectronic devices. Nanoscale, 2013. 5(19): p. 8889-8893.
    76. Huang, G., et al., Graphene‐Like MoS2/Graphene Composites: Cationic Surfactant‐Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium. Small, 2013. 9(21): p. 3693-3703.
    77. Yuan, C., et al., Interface-hydrothermal synthesis of Sn 3 S 4/graphene sheet composites and their application in electrochemical capacitors. Materials letters, 2011. 65(2): p. 374-377.
    78. Lu, Z., et al., One-step aqueous synthesis of graphene–CdTe quantum dot-composed nanosheet and its enhanced photoresponses. Journal of colloid and interface science, 2011. 353(2): p. 588-592.
    79. Medintz, I.L., et al., Quantum dot bioconjugates for imaging, labelling and sensing. Nature materials, 2005. 4(6): p. 435-446.
    80. Resch-Genger, U., et al., Quantum dots versus organic dyes as fluorescent labels. Nature methods, 2008. 5(9): p. 763-775.
    81. Jasieniak, J., et al., Re-examination of the size-dependent absorption properties of CdSe quantum dots. The Journal of Physical Chemistry C, 2009. 113(45): p. 19468-19474.
    82. Kim, J.Y., et al., 25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter‐Century of Advances. Advanced Materials, 2013. 25(36): p. 4986-5010.
    83. Bijani, S., et al., Low-temperature electrodeposition of Cu2O thin films: modulation of micro-nanostructure by modifying the applied potential and electrolytic bath pH. The Journal of Physical Chemistry C, 2009. 113(45): p. 19482-19487.
    84. Ding, L., et al., Direct Electrodeposition of Graphene‐Gold Nanocomposite Films for Ultrasensitive Voltammetric Determination of Mercury (II). Electroanalysis, 2014. 26(1): p. 121-128.
    85. Golsheikh, A.M., et al., One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon, 2013. 62: p. 405-412.
    86. Claussen, J.C., et al., Nanostructuring platinum nanoparticles on multilayered graphene petal nanosheets for electrochemical biosensing. Advanced Functional Materials, 2012. 22(16): p. 3399-3405.
    87. Han, K. and M. Tao, Electrochemically deposited p–n homojunction cuprous oxide solar cells. Solar Energy Materials and Solar Cells, 2009. 93(1): p. 153-157.
    88. He, F.-A., et al., Fabrication of hybrids based on graphene and metal nanoparticles by in situ and self-assembled methods. Nanoscale, 2011. 3(3): p. 1182-1188.
    89. He, F., et al., The attachment of Fe 3 O 4 nanoparticles to graphene oxide by covalent bonding. Carbon, 2010. 48(11): p. 3139-3144.
    90. Pham, T.A., B.C. Choi, and Y.T. Jeong, Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets: preparation, characterization, and optical properties. Nanotechnology, 2010. 21(46): p. 465603.
    91. Herron, N., Y. Wang, and H. Eckert, Synthesis and characterization of surface-capped, size-quantized cadmium sulfide clusters. Chemical control of cluster size. Journal of the American Chemical Society, 1990. 112(4): p. 1322-1326.
    92. Ismaili, H., et al., Light-activated covalent formation of gold nanoparticle–graphene and gold nanoparticle–glass composites. Langmuir, 2011. 27(21): p. 13261-13268.
    93. Björk, J., et al., Adsorption of aromatic and anti-aromatic systems on graphene through π− π stacking. The Journal of Physical Chemistry Letters, 2010. 1(23): p. 3407-3412.
    94. Wang, W., et al., Hybrid low resistance ultracapacitor electrodes based on 1-pyrenebutyric acid functionalized centimeter-scale graphene sheets. Journal of nanoscience and nanotechnology, 2012. 12(9): p. 6913-6920.
    95. Zhang, X., et al., A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers. Chemical Communications, 2011. 47(17): p. 4929-4931.
    96. Bourlinos, A.B., et al., Liquid‐phase exfoliation of graphite towards solubilized graphenes. Small, 2009. 5(16): p. 1841-1845.
    97. Lin, Y., et al., Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS nano, 2010. 4(6): p. 3033-3038.
    98. Zhu, G., et al., Flexible Magnetic Nanoparticles–Reduced Graphene Oxide Composite Membranes Formed by Self‐Assembly in Solution. ChemPhysChem, 2010. 11(11): p. 2432-2437.
    99. Zhai, D., et al., The preparation of graphene decorated with manganese dioxide nanoparticles by electrostatic adsorption for use in supercapacitors. Carbon, 2012. 50(14): p. 5034-5043.
    100. Lu, G., et al., Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Research, 2009. 2(3): p. 192-200.
    101. Liu, J., et al., Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. Journal of the American Chemical Society, 2010. 132(21): p. 7279-7281.
    102. Li, J., et al., Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan. Biosensors and Bioelectronics, 2013. 42: p. 198-206.
    103. Fonsaca, J.E., et al., Graphene nanoribbons inducing cube-shaped Ag nanoparticle assemblies. Carbon, 2015. 93: p. 800-811.
    104. Wang, S. and A. Manthiram, Graphene ribbon-supported Pd nanoparticles as highly durable, efficient electrocatalysts for formic acid oxidation. Electrochimica Acta, 2013. 88: p. 565-570.
    105. Wang, C., et al., Graphene nanoribbons as a novel support material for high performance fuel cell electrocatalysts. International Journal of Hydrogen Energy, 2013. 38(30): p. 13230-13237.
    106. Davis, D.J., et al., Silver‐Graphene Nanoribbon Composite Catalyst for the Oxygen Reduction Reaction in Alkaline Electrolyte. Electroanalysis, 2014. 26(1): p. 164-170.
    107. Raman, C.V., A change of wave-length in light scattering. Nature, 1928. 121: p. 619.
    108. Moskovits, M., Surface-enhanced spectroscopy. Reviews of modern physics, 1985. 57(3): p. 783.
    109. Fleischmann, M., P.J. Hendra, and A. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
    110. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
    111. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society, 1977. 99(15): p. 5215-5217.
    112. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
    113. Qian, X.-M. and S. Nie, Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chemical Society Reviews, 2008. 37(5): p. 912-920.
    114. Xie, W., P. Qiu, and C. Mao, Bio-imaging, detection and analysis by using nanostructures as SERS substrates. Journal of materials chemistry, 2011. 21(14): p. 5190-5202.
    115. Hering, K., et al., SERS: a versatile tool in chemical and biochemical diagnostics. Analytical and bioanalytical chemistry, 2008. 390(1): p. 113-124.
    116. Jensen, L., C.M. Aikens, and G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 2008. 37(5): p. 1061-1073.
    117. Kambhampati, P., et al., On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. The Journal of chemical physics, 1998. 108(12): p. 5013-5026.
    118. Arenas, J.F., et al., The role of charge-transfer states of the metal-adsorbate complex in surface-enhanced Raman scattering. The Journal of chemical physics, 2002. 116(16): p. 7207-7216.
    119. Otto, A., The ‘chemical’(electronic) contribution to surface‐enhanced Raman scattering. Journal of Raman Spectroscopy, 2005. 36(6‐7): p. 497-509.
    120. Ji, W., et al., Generation of pronounced resonance profile of charge-transfer contributions to surface-enhanced Raman scattering. The Journal of Physical Chemistry C, 2012. 116(3): p. 2515-2520.
    121. Moore, J.E., S.M. Morton, and L. Jensen, Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS. The journal of physical chemistry letters, 2012. 3(17): p. 2470-2475.
    122. Morton, S.M. and L. Jensen, Understanding the Molecule− Surface Chemical Coupling in SERS. Journal of the American Chemical Society, 2009. 131(11): p. 4090-4098.
    123. Valley, N., et al., Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism. The Journal of chemical physics, 2010. 133(5): p. 054103.
    124. Valley, N., et al., A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): Theory and experiment. The Journal of Physical Chemistry Letters, 2013. 4(16): p. 2599-2604.
    125. Kumar, G.V.P., Plasmonic nano-architectures for surface enhanced Raman scattering: a review. Journal of Nanophotonics, 2012. 6(1): p. 064503-1-064503-20.
    126. Xu, H., et al., Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Physical Review E, 2000. 62(3): p. 4318-4324.
    127. Stiles, P.L., et al., Surface-Enhanced Raman Spectroscopy. Annual Review of Analytical Chemistry, 2008. 1(1): p. 601-626.
    128. Contreras-Cáceres, R., A. Fernández-Barbero, and B. Sierra-Martín, Surface-enhanced Raman scattering sensors based on hybrid nanoparticles. 2011: INTECH Open Access Publisher.
    129. Smith, E. and G. Dent, Modern Raman spectroscopy: a practical approach. 2013: John Wiley & Sons.
    130. Ling, X., et al., Can graphene be used as a substrate for Raman enhancement? Nano letters, 2009. 10(2): p. 553-561.
    131. Qiu, C., et al., Investigation of n-layer graphenes as substrates for Raman enhancement of crystal violet. The Journal of Physical Chemistry C, 2011. 115(20): p. 10019-10025.
    132. Peimyoo, N., et al., Thickness-dependent azobenzene doping in mono-and few-layer graphene. Carbon, 2012. 50(1): p. 201-208.
    133. Huh, S., et al., UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. Acs Nano, 2011. 5(12): p. 9799-9806.
    134. Yu, X., et al., Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano, 2011. 5(2): p. 952-958.
    135. Liu, C.-Y., et al., Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy. Optics Express, 2011. 19(18): p. 17092-17098.
    136. Kneipp, K., H. Kneipp, and H.G. Bohr, Single-Molecule SERS Spectroscopy, in Surface-Enhanced Raman Scattering: Physics and Applications, K. Kneipp, M. Moskovits, and H. Kneipp, Editors. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 261-277.
    137. Ling, X. and J. Zhang, First-Layer Effect in Graphene-Enhanced Raman Scattering. Small, 2010. 6(18): p. 2020-2025.
    138. Xu, H., et al., Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene. ACS Nano, 2011. 5(7): p. 5338-5344.
    139. Ling, X. and J. Zhang, Interference Phenomenon in Graphene-Enhanced Raman Scattering. The Journal of Physical Chemistry C, 2011. 115(6): p. 2835-2840.
    140. Ling, X., et al., Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Graphene-Enhanced Raman Spectroscopy. Small, 2012. 8(9): p. 1365-1372.
    141. Thrall, E.S., et al., R6G on Graphene: High Raman Detection Sensitivity, Yet Decreased Raman Cross-Section. Nano Letters, 2012. 12(3): p. 1571-1577.
    142. Le Ru, E.C. and P.G. Etchegoin, Chapter 4 - SERS enhancement factors and related topics, in Principles of Surface-Enhanced Raman Spectroscopy. 2009, Elsevier: Amsterdam. p. 185-264.
    143. Le Ru, E.C., et al., Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
    144. Le Ru, E.C. and P.G. Etchegoin, Quantifying SERS enhancements. MRS Bulletin, 2013. 38(08): p. 631-640.
    145. Ying Huang, S., B.-I. Wu, and S. Foong, Surface-enhanced Raman scattering enhancement factor distribution for nanoparticles of arbitrary shapes using surface integral equation method. Journal of Applied Physics, 2013. 113(4): p. 044304.
    146. Ringe, E., et al., Single nanoparticle plasmonics. Physical Chemistry Chemical Physics, 2013. 15(12): p. 4110-4129.
    147. Pedro, H.C.C., et al., Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube. Nanotechnology, 2009. 20(43): p. 434020.
    148. Tiwari, N., et al., Study of adsorption behavior of aminothiophenols on gold nanorods using surface-enhanced Raman spectroscopy. Journal of Nanophotonics, 2011. 5(1): p. 053513-053513-14.
    149. Orendorff, C.J., et al., Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Physical Chemistry Chemical Physics, 2006. 8(1): p. 165-170.
    150. Hildebrandt, P., et al., Enhancement factor of surface-enhanced Raman scattering on silver and gold surfaces upon near-infrared excitation. Indication of an unusual strong contribution of the chemical effect. Journal of Raman Spectroscopy, 1993. 24(11): p. 791-796.
    151. Fateixa, S., et al., Raman Signal Enhancement Dependence on the Gel Strength of Ag/Hydrogels Used as SERS Substrates. The Journal of Physical Chemistry C, 2014. 118(19): p. 10384-10392.
    152. Fateixa, S., et al., Composite blends of gold nanorods and poly(t-butylacrylate) beads as new substrates for SERS. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. 113: p. 100-106.
    153. Pavel, I.E., et al., Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment. Journal of Chemical Education, 2012. 89(2): p. 286-290.
    154. Souza, G.R., et al., In Vivo Detection of Gold−Imidazole Self-Assembly Complexes:  NIR-SERS Signal Reporters. Analytical Chemistry, 2006. 78(17): p. 6232-6237.
    155. Malard, L.M., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5-6): p. 51-87.
    156. Wang, C., et al., In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition. Nanoscale, 2013. 5(2): p. 600-605.
    157. Qian, W., et al., Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction. ACS applied materials & interfaces, 2011. 3(7): p. 2259-2264.
    158. Ferrari, A., et al., Raman spectrum of graphene and graphene layers. Physical review letters, 2006. 97(18): p. 187401.
    159. Graf, D., et al., Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano letters, 2007. 7(2): p. 238-242.
    160. Mei, T., et al., One-pot synthesis of carbon nanoribbons and their enhanced lithium storage performance. Journal of Materials Chemistry A, 2014. 2(30): p. 11974-11979.
    161. Zhang, K., Y. Zhang, and S. Wang, Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Scientific reports, 2013. 3: p. 3448.
    162. Dreyer, D.R., et al., The chemistry of graphene oxide. Chemical Society Reviews, 2010. 39(1): p. 228-240.
    163. Yang, D., et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 2009. 47(1): p. 145-152.
    164. Wang, C., et al., Facile synthesis of laminate-structured graphene sheet–Fe 3 O 4 nanocomposites with superior high reversible specific capacity and cyclic stability for lithium-ion batteries. RSC Advances, 2012. 2(28): p. 10680-10688.
    165. Zhang, K., et al., Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials, 2010. 22(4): p. 1392-1401.
    166. Kovtyukhova, N.I., et al., Non-oxidative intercalation and exfoliation of graphite by Brnsted acids. Nature chemistry, 2014. 6(11): p. 957-963.
    167. Yang, Z., et al., Carbon nanotubes bridged with graphene nanoribbons and their use in high‐efficiency dye‐sensitized solar cells. Angewandte Chemie International Edition, 2013. 52(14): p. 3996-3999.
    168. Bhardwaj, T., et al., Enhanced electrochemical lithium storage by graphene nanoribbons. Journal of the American Chemical Society, 2010. 132(36): p. 12556-12558.
    169. Huang, T. and X.-H.N. Xu, Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. Journal of materials chemistry, 2010. 20(44): p. 9867-9876.
    170. Wagner, C.D. and G. Muilenberg, Handbook of X-ray photoelectron spectroscopy. 1979: Perkin-Elmer.
    171. Gunawan, C., et al., Reversible antimicrobial photoswitching in nanosilver. Small, 2009. 5(3): p. 341-344.
    172. Lopez-Salido, I., et al., Electronic and geometric properties of Au nanoparticles on highly ordered pyrolytic graphite (HOPG) studied using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). The Journal of Physical Chemistry B, 2006. 110(3): p. 1128-1136.
    173. Yan, Q., et al., Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano letters, 2007. 7(6): p. 1469-1473.
    174. Lin, W.-C., et al., Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics, 2011. 6(2): p. 201-206.
    175. Riskin, M., et al., Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite. Journal of the American Chemical Society, 2009. 131(21): p. 7368-7378.
    176. Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology, 2008. 3(9): p. 563-568.
    177. Lin, Y., T.V. Williams, and J.W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets. The Journal of Physical Chemistry Letters, 2009. 1(1): p. 277-283.
    178. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425.

    QR CODE