簡易檢索 / 詳目顯示

研究生: 張雯茹
Wen-Ru Chang
論文名稱: 三角形銀奈米板/氧化石墨烯混成材料於表面增強拉曼散射之應用
Triangular Silver Nanoplates/Carbon-based Nanomaterials Hybrids for Surface-enhanced Raman Scattering Applications
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱智瑋
Chih-Wei Chiu
邱顯堂
Hsien-Tang Chiu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 95
中文關鍵詞: 表面增強拉曼散射三角形銀奈米板腺嘌呤氧化石墨烯還原氧化石墨烯金黃色葡萄球菌
外文關鍵詞: Surface-enhanced Raman Scattering, triangular silver nanoplates, Adenine, Graphene oxide, Reduced graphene oxide, Staphylococcus aureus
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以種子介導生長法製備出不同尺寸的三角形銀奈米板(Triangular silver nanoplates, TSNPs),並結合氧化石墨烯(Graphene Oxide, GO)、還原氧化石墨烯(Reduced Graphene Oxide, rGO),形成TSNPs/奈米碳材料複合物,進而研究出具有高靈敏度和選擇性的奈米複合物底板,應用於表面增強拉曼散射(Surface Enhanced Raman Scattering, SERS)。據實驗結果所示,小尺寸TSNPs具有更好的SERS訊號,同時,由於GO在水中分散性良好,厚度約為5 nm,於z軸產生熱點效應,使TSNPs/GO複合物的增強效果優於TSNPs/rGO複合物,並且因為GO有豐富的含氧官能基,能與被Pluronic F-127包覆的TSNPs形成氫鍵,使TSNPs於GO表面有更良好的分散外,亦可透過π-π堆積(π-π stacking)堆疊吸收待測分子腺嘌呤(Adenine)加強分子結構的穩定性,使Adenine與底板有更緊密的吸附。經分析後得出在重量比為40/1之TSNPs/GO複合物對Adenine的偵測極限濃度(Limited of Detection, LOD)為10-9 M,且增強因子(Enhancement Factor, EF)為1.09 x 108。進一步應用於生物檢測上,SERS可以有效縮短細菌檢測的時間,在細菌含量極低的情況下達到良好的偵測水平,經實驗後發現TSNPs/GO複合物對金黃色葡萄球菌(Staphylococcus aureus)的偵測極限為102 CFU/mL,顯示了TSNPs/GO複合物作為SERS底板的巨大市場潛力及其在細菌檢測中的廣泛應用。


    In this study, triangular silver nanoplates (TSNPs) with different edge lengths were prepared by seed-mediated growth method combined with the different oxygen-containing of nanocarbon materials (graphene oxide and reduced graphene oxide). Formation of TSNPs/nanocarbon material complexes for surface-enhanced Raman scattering (SERS). According to the experimental results, it was noted that the smaller size of TSNPs have better SERS signals. At the same time, the enhancement effect of TSNPs/GO is better than TSNPs/rGO. Since GO is well dispersed in water with a thickness of about 5 nm, the hot spot effect in the z-axis makes the enhancement effect of TSNPs/GO complex is better than TSNPs/rGO complex. Moreover, GO contains many oxygen-containing functional groups. It can form hydrogen bonds with TSNPs which Pluronic F-127 coats. The molecular structure of Adenine can be stabilized by absorbing GO through π-π stacking, so that Adenine can be more closely adsorbed to the substrate. In the SERS test, it was found that the TSNPs/GO complex with a weight ratio of 40/1 have a limit of detection(LOD) of 10-9 M. The enhancement factor (EF) for Adenine is 1.09×108. Further, SERS can effectively shorten the detection time of bacteria and achieve good detection levels at very low bacteria levels. After the experiment, the detection limit of TSNPs/GO for Staphylococcus aureus is 102 CFU/mL. This study demonstrates the great market potential of TSNPs/GO complex as SERS substrates and its wide application in bacterial detection.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 奈米銀的介紹 3 2.1.1 奈米材料簡介 3 2.1.2 三角形銀奈米板(TSNPs)的特性 6 2.1.3 三角形銀奈米板的製備方法 7 2.2 奈米碳材料的介紹 9 2.2.1 奈米材料維度的介紹 9 2.2.2 石墨烯(Graphene)的介紹 9 2.2.3 氧化石墨烯(Graphene oxide)的介紹 14 2.2.4 還原氧化石墨烯(Reduced graphene oxide)的介紹 16 2.3 拉曼光譜(Raman scattering) 17 2.3.1 拉曼光譜的發展與特性 17 2.3.2 拉曼光譜的原理 19 2.3.3 表面增強拉曼散射(SERS)的簡介 20 2.3.4 表面增強拉曼散射機制 21 2.3.5 表面增強拉曼散射應用 23 2.3.6 熱點(Hot junction) 24 2.3.7 腺嘌呤(Adenine) 28 2.4 金黃色葡萄球菌(Staphylococcus aureus) 29 2.4.1 金黃色葡萄球菌的介紹 29 2.4.2 菌落形成單位(Colony-Forming Unit, CFU) 30 第三章 實驗方法 32 3.1 實驗流程圖 32 3.2 實驗藥品與儀器 33 3.2.1 實驗藥品 33 3.2.2 實驗設備及儀器 35 3.3 實驗方法和原理 36 3.3.1 合成不同邊緣長度的TSNPs 36 3.3.2 合成不同截角的TSNPs 38 3.3.3 TSNPs/GO的合成 39 3.3.4 TSNPs/rGO的合成 39 3.3.5 鑑定及儀器分析 40 第四章 結果與討論 44 4.1 三角形銀奈米板的合成 44 4.1.1 不同邊緣長度之TSNPs的合成 44 4.1.2 TSNPs於SERS上之探討 48 4.1.3 不同曲率半徑TSNPs於SERS上之探討 52 4.2 合成三角形銀奈米板/奈米碳材複合物 56 4.3 SERS效應與應用探討 58 4.3.1 TSNPs/奈米碳材複合物之SERS效果及偵測極限 58 4.3.2 TSNPs應用於金黃色葡萄球菌進行SERS分析 64 4.3.3 TSNPs/GO應用於金黃色葡萄球菌進行SERS分析 66 4.3.4 與市售SERS底板的比較 68 第五章 結論 70 第六章 參考文獻 72

    1.Vendamani, V. S.; Rao, S. N.; Pathak, A. P.; Soma, V. R. Silicon Nanostructures for Molecular Sensing: A Review. ACS Appl. Nano Mater. 2022, 5, 4550–4582.
    2.Craig, A. P.; Franca, A. S.; Irudayaraj, J. Surface-enhanced Raman Spectroscopy Applied to Food Safety. Annu. Rev. Food Sci. Technol. 2013, 4, 369–380.
    3.Song, D.; Yang, R.; Long, F.; Zhu, A. Applications of Magnetic Nanoparticles in Surface-enhanced Raman Scattering (SERS) Detection of Environmental Pollutants. J. Environ. Sci. 2019, 80, 14–34.
    4.Chen, Y. F.; Wang, C. H.; Chang, W. R.; Li, J. W.; Hsu, M. F.; Sun, Y. S.; Liu, T. Y.; Chiu, C. W. Hydrophilic–hydrophobic Nanohybrids of AuNP-Immobilized Two-dimensional Nanomica Platelets as Flexible Substrates for High-efficiency and High-selectivity Surface-enhanced Raman Scattering Microbe Detection. ACS Appl. Bio Mater. 2022, 5, 1073–1083.
    5.Chen, H.; Shao, L.; Lia, Q.; Wang, J. Gold Nanorods and Their Plasmonic Properties. Chem. Soc. Rev. 2013, 42, 2679–2724.
    6.Mosier-Boss, P. A. Review on SERS of Bacteria. Biosensors 2017, 7, 51.
    7.Sun, H.; Liu, H.; Wu, Y. A Green, Reusable SERS Film with High Sensitivity for In-situ Detection of Thiram in Apple Juice. Appl. Surf. Sci. 2017, 416, 704–709.
    8.Petrovic Fabijan, A.; Lin, R. C.; Ho, J.; Maddocks, S.; Ben Zakour, N. L.; Iredell, J. R. Safety of Bacteriophage Therapy in Severe Staphylococcus Aureus Infection. Nat. Microbiol. 2020, 5, 465–472.
    9.Ozin, G. A.; Arsenault, A. Nanochemistry: A Chemical Approach to Nanomaterials. Royal Society of Chemistry 2015.
    10.Tang, Z.; Zhang, X.; Shu, Y.; Guo, M.; Zhang, H.; Tao, W. Insights from Nanotechnology in COVID-19 Treatment. Nano Today 2021, 36, 101019.
    11.Kim, D.; Shin, K.; Kwon, S. G.; Hyeon, T. Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Adv. Mater. 2018, 30, 1802309.
    12.Zhang, X.; Zhang, X.; Luo, C.; Liu, Z.; Chen, Y.; Dong, S.; Jiang, C.; Yang, S.; Wang, F.; Xiao, X. Volume‐enhanced Raman Scattering Detection of Viruses. Small 2019, 15, 1805516.
    13.Saallah, S.; Lenggoro, I. W. Nanoparticles Carrying Biological Molecules: Recent Advances and Applications. KONA Powder Part. J. 2018, 35, 89–111.
    14.Wang, L.; Hasanzadeh Kafshgari, M.; Meunier, M. Optical Properties and Applications of Plasmonic‐metal Nanoparticles. Adv. Funct. Mater. 2020, 30, 2005400.
    15.T. Mitsudome, K. Kaneda. Gold Nanoparticle Catalysts for Selective Hydrogenations. Green Chem. 2013, 10, 2636–2654.
    16.Reguera, J.; Langer, J.; de Aberasturi, D. J.; Liz-Marzan, L. M. Anisotropic Metal Nanoparticles for Surface-enhanced Raman Scattering. Nanometals 2020, 713–754.
    17.Kang, H.; Buchman, J. T.; Rodriguez, R. S.; Ring, H. L.; He, J.; Bantz, K. C.; Haynes, C. L. Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chem. Rev. 2018, 119, 664–699
    18.Gu, J.; Dichiara, A. Hybridization between Cellulose Nanofibrils and Faceted Silver Nanoparticles Used with Surface Enhanced Raman Scattering for Trace Dye Detection. J. Biol. Macromol. 2020, 143, 85–92.
    19.Begum, R.; Farooqi, Z. H.; Naseem, K.; Ali, F.; Batool, M.; Xiao, J.; Irfan, A. Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review. Cri. Rev. Anal. Chem. 2018, 48, 503–516.
    20.Nerantzaki, M.; Skoufa, E.; Adam, K. V.; Nanaki, S.; Avgeropoulos, A.; Kostoglou, M.; Bikiaris, D. Amphiphilic Block Copolymer Microspheres Derived from Castor Oil, Poly (ε-carpolactone), and Poly (ethylene glycol): Preparation, Characterization and Application in Naltrexone Drug Delivery. Materials 2018, 11, 1996.
    21.Simon, T.; Boca, S. C.; Astilean, S. Pluronic-Nanogold Hybrids: Synthesis and Tagging with Photosensitizing Molecules. Colloids and Surfaces B, Biointerfaces 2012, 97, 77–83.
    22.Zhang, C. H.; Zhu, J.; Li, J. J.; Zhao, J. W. Small and Sharp Triangular Silver Nanoplates Synthesized Utilizing Tiny Triangular Nuclei and Their Excellent SERS Activity for Selective Detection of Thiram Residue in Soil. ACS Appl. Mater. Interfaces 2017, 9, 17387–17398.
    23.Cheng, K.; Wallaert, S.; Ardebili, H.; Karim, A. Advanced Triboelectric Nanogenerators Based on Low-dimension Carbon Materials: A Review. Carbon 2022, 194, 81–103.
    24.Novoselov, K. S.; Neto, A. C. Two-dimensional Crystals-based Heterostructures: Materials with Tailored Properties. Phys. Scr. 2012, 146, 014006.
    25.Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nanoscience and Technology 2010, 11–19.
    26.Xu, W.; Mao, N.; Zhang, J. Graphene: A Platform for Surface‐enhanced Raman Spectroscopy. Small 2013, 9, 1206–1224.
    27.Papadakis, D.; Diamantopoulou, A.; Pantazopoulos, P. A.; Palles, D.; Sakellis, E.; Boukos, N.; Stefanou, N.; Likodimos, V. Nanographene Oxide–TiO2 Photonic Films as Plasmon-free Substrates for Surface-enhanced Raman Scattering. Nanoscale 2019, 11, 21542–21553.
    28.Bai, R. G.; Muthoosamy, K.; Manickam, S.; Hilal-Alnaqbi, A. Graphene-based 3D Scaffolds in Tissue Engineering: Fabrication, Applications, and Future Scope in Liver Tissue Engineering. Int. J. Nanomedicine 2019, 14, 5753.
    29.Rowley-Neale, S. J.; Randviir, E. P.; Dena, A. S. A.; Banks, C. E. An Overview of Recent Applications of Reduced Graphene Oxide as A Basis of Electroanalytical Sensing Platforms. Appl. Mater. Today 2018, 10, 218–226.
    30.Jones, R. R.; Hooper, D. C.; Zhang, L.; Wolverson, D.; Valev, V. K. Raman Techniques: Fundamentals and Frontiers. Nanoscale Res. Lett. 2019, 14, 1–34.
    31.Staveley, L. A. K. The Characterization of Chemical Purity: Organic Compounds. Elsevier Sci. 2016.
    32.Azzam, S. I.; Kildishev, A. V.; Ma, R. M.; Ning, C. Z.; Oulton, R.; Shalaev, V. M.; Stockman, M. I.; Zhang, X. Ten Tears of Spasers and Plasmonic Nanolasers. Light Sci. Appl. 2020, 9, 1–21.
    33.Perez-Jimenez, A. I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-enhanced Raman Spectroscopy: Benefits, Trade-offs and Future Developments. Chem. Sci. 2020, 11, 4563–4577.
    34.Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-enhanced Raman Scattering. Biosensors 2019, 9, 57.
    35.Cialla, D.; Marz, A.; Bohme, R.; Theil, F.; Weber, K.; Schmitt, M.; Popp, J. Surface-enhanced Raman Spectroscopy (SERS): Progress and Trends. Anal. Bioanal. Chem. 2012, 403, 27–54.
    36.Wang, Y.; Yan, B.; Chen, L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 2013, 113, 1391–1428.
    37.Lee, Y. C.; Chiu, C. W. Immobilization and 3D Hot-junction Formation of Gold Nanoparticles on Two-dimensional Silicate Nanoplatelets as Substrates for High-efficiency Surface-enhanced Raman Scattering Detection. Nanomaterials 2019, 9, 324.
    38.Chiu, C. W.; Lee, Y. C.; Ou, G. B.; Cheng, C. C. Controllable 3D Hot-Junctions of Silver Nanoparticles Stabilized by Amphiphilic Tri-block Copolymer/Graphene Oxide Hybrid Surfactants for Use as Surface-Enhanced Raman Scattering Substrates. Ind. Eng. Chem. Res. 2017, 56, 2935–2942.
    39.Kurouski, D.; Dazzi, A.; Zenobi, R.; Centrone, A. Infrared and Raman Chemical Imaging and Spectroscopy at The Nanoscale. Chem. Soc. Rev. 2020, 49, 3315–3347.
    40.Butler, H. J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White K.; Fullwood, N. J.; Gardner, B.; Martin-Hirsch, P. L.; Walsh, M. J.; Mcainsh, M. R.; Stone, N.; Martin, F. L. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016, 11, 664–687.
    41.Mosca, S.; Conti, C.; Stone, N.; Matousek, P. Spatially Offset Raman Spectroscopy. Nature Reviews Methods Primers 2021, 1, 1–16.
    42.Dong, R.; Weng, S.; Yang, L.; Liu, J. Detection and Direct Readout of Drugs in Human Urine Using Dynamic Surface-enhanced Raman Spectroscopy and Support Vector Machines. Anal. Chem. 2015, 87, 2937–2944.
    43.Liu, H.; Yang, Z.; Meng, L.; Sun, Y.; Wang, J.; Yang, L.; Liu, J.; Tian, Z. Three-dimensional and Time-ordered Surface-enhanced Raman Scattering Hotspot Matrix. J. Am. Chem. Soc. 2014, 136, 5332-5341.
    44.Guerrini, L.; Graham, D. Molecularly-mediated Assemblies of Plasmonic Nanoparticles for Surface-enhanced Raman Spectroscopy applications. Chem. Soc. Rev. 2012, 41, 7085–7107.
    45.Kalachyova, Y.; Mares, D.; Lyutakov, O.; Kostejn, M.; Lapcak, L.; Svorcik, V. Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response. J. Phys. Chem. C 2015, 119, 9506–9512.
    46.Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguie, B.; Baumberg, J. J.; ... & Liz-Marzan, L. M. Present and Future of Surface-enhanced Raman Scattering. ACS Nano 2019, 14, 28–117.
    47.Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677.
    48.Albrecht, M. G.; Creighton, J. A. Anomalously Intense Raman Spectra of Pyridine at A Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.
    49.Le Ru, E. C.; Etchegoin, P. G. Rigorous Justification of The |E|4 Enhancement Factor in Surface Enhanced Raman Spectroscopy. Chem. Phys. Lett. 2006, 423, 63–66.
    50.Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016, 116, 5464–5519.
    51.Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. Can Graphene be Used as A Substrate for Raman Enhancement? Nano Lett. 2010, 10, 553–561.
    52.Nowicka, A. B.; Czaplicka, M.; Szymborski, T.; Kaminska, A. Combined Negative Dielectrophoresis with A Flexible SERS Platform as A Novel Strategy for Rapid Detection and Identification of Bacteria. Anal. Bioanal. Chem. 2021, 413, 2007–2020.
    53.Li, J.; Chen, L.; Lou, T.; Wang, Y. Highly Sensitive SERS Detection of As3+ Ions in Aqueous Media Using Glutathione Functionalized Silver Nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 3936–3941.
    54.Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based Plasmon-enhanced Raman Spectroscopy for Surface Analysis of Materials. Nat. Rev. Mater. 2016, 1, 1–16.
    55.Lee, H. K.; Lee, Y. H.; Koh, C. S. L.; Phan-Quang, G. C.; Han, X.; Lay, C. L.; Sim, H. Y. F.; An, Q.; Ling, X. Y. Designing Surface-enhanced Raman Scattering (SERS) Platforms Beyond Hotspot Engineering: Emerging Opportunities in Analyte Manipulations and Hybrid Materials. Chem. Soc. Rev. 2019, 48, 731–756.
    56.Huang, J. A.; Mousavi, M. Z.; Giovannini, G.; Zhao, Y.; Hubarevich, A.; Soler, M. A.; Rocchia, W.; Garoli, D.; De Angelis, F. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in A Single SERS Hot Spot. Angew. Chem. Int. Ed. 2020, 59, 11423–11431.
    57.Liu, T. Y.; Ho, J. Y.; Wei, J. C.; Cheng, W. C.; Chen, I. H.; Shiue, J.; Wang, H. H.; Wang, J. K.; Wang, Y. L.; Lin, J. J. Label-free and Culture-free Microbe Detection by Three Dimensional Hot-junctions of Flexible Raman-enhancing Nanohybrid Platelets. J. Mater. Chem. B 2014, 2, 1136–1143
    58.Le Ru, E.; Etchegoin, P. Principles of Surface-enhanced Raman Spectroscopy.: and Related Plasmonic Effects. Elsevier Sci. 2008.
    59.Rosen, D. A.; Tao, A. R. Modeling The Optical Properties of Bowtie Antenna Generated by Self-assembled Ag Triangular Nanoprisms. ACS Appl. Mater. Interfaces 2014, 6, 4134–4142.
    60.Zhang, Q.; Li, N.; Goebl, J.; Lu, Z.; Yin, Y. A Systematic Study of The Synthesis of Silver Nanoplates: Is Citrate A “Magic” Reagent? J. Am. Chem. Soc. 2011, 133, 18931–18939.
    61.Yang, Y. X.; Chu, J. P. Cost-effective Large-area Ag Nanotube Arrays for SERS Detections: Effects of Nanotube Geometry. Nanotechnology 2021, 32, 475504.
    62.Zannotti, M.; Rossi, A.; Giovannetti, R. SERS Activity of Silver Nanosphere, Triangular Nanoplates, Hexagonal Nanoplates and Quasi-spherical Nanoparticles: Effect of Shape and Morphology. Coatings 2020, 10, 288.
    63.Kumar, G.; Soni, R. K. Trace-level Detection of Explosive Molecules with Triangular Silver Nanoplates-based SERS Substrates. Plasmonics 2022, 17, 559–573.
    64.Xiong, Y.; Xia, Y. Shape‐controlled Synthesis of Metal Nanostructures: The Case of Palladium. Adv. Mater. 2007, 19, 3385–3391.
    65.Rycenga, M.; Camargo, P. H.; Li, W.; Moran, C. H.; Xia, Y. Understanding The SERS Effects of Single Silver Nanoparticles and Their Dimers, One at A Time. J. Phys. Chem. Lett. 2010, 1, 696–703.
    66.Kumar, G.; Soni, R. K. Trace-level Detection of Explosive Molecules with Triangular Silver Nanoplates-based SERS Substrates. Plasmonics 2022, 17, 559–573.
    67.Radziuk, D.; Moehwald, H. Prospects for Plasmonic Hot Spots in Single Molecule SERS Towards The Chemical Imaging of Live Cells. Phys. Chem. Chem. Phys. 2015, 17, 21072–21093.
    68.Tzeng, Y.; Lin, B. Y. Silver SERS Adenine Sensors with A Very Low Detection Limit. Biosensors 2020, 10, 53.
    69.Pallares, R. M.; Su, X.; Limb, S. H.; Nguyen, T. K. T. Fine-tuning of Gold Nanorod Dimensions and Plasmonic Properties Using the Hofmeister Effects. J. Mater. Chem. C 2016, 4, 53–61.
    70.Tzeng, Y.; Lin, B. Y. Silver SERS Adenine Sensors with A Very Low Detection Limit. Biosensors 2020, 10, 53.
    71.Barhoumi, A.; Zhang, D.; Tam, F.; Halas, N. J. Surface-enhanced Raman Spectroscopy of DNA. J. Am. Chem. Soc. 2008, 130, 5523–5529.
    72.Zhang, H.; Ma, X.; Liu, Y.; Duan, N.; Wu, S.; Wang, Z.; Xu, B. Gold Nanoparticles Enhanced SERS Aptasensor for The Simultaneous Detection of Salmonella Typhimurium and Staphylococcus Aureus. Biosens. Bioelectron. 2015, 74, 872–877.
    73.Guerrini, L.; Graham, D. Molecularly-mediated Assemblies of Plasmonic Nanoparticles for Surface-enhanced Raman Spectroscopy Applications. Chem. Soc. Rev. 2012, 41, 7085–7107.
    74.Ghosh, S.; Manna, L. The Many “Facets” of Halide Ions in The Chemistry of Colloidal Inorganic Nanocrystals. Chem. Rev. 2018, 118, 7804–7864.
    75.Jiang, X.; Zeng, Q.; Yu, A. Thiol-frozen Shape Evolution of Triangular Silver Nanoplates. Langmuir 2007, 23, 2218–2223.
    76.Lee, B. H.; Hsu, M. S.; Hsu, Y. C.; Lo, C. W.; Huang, C. L. A Facile Method to Obtain Highly Stable Silver Sanoplate Colloids with Desired Surface Plasmon Resonance Wavelengths. J. Phys. Chem. C 2010, 114, 6222–6227.
    77.Yu, X.; Cai, H.; Zhang, W.; Li, X.; Pan, N.; Luo, Y.; Wang, X.; Hou, J. G. Tuning Chemical Enhancement of SERS by Controlling The Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano 2011, 5, 952–958.

    無法下載圖示 全文公開日期 2025/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE