簡易檢索 / 詳目顯示

研究生: 李彥陞
Yan-Sheng Li
論文名稱: 綠色高產率石墨烯奈米帶製成即可撓式氧化石墨烯奈米帶/奈米碳管導電複合材料應用
A green and high-yield synthesis of graphene nanorubbon, and demonstration of water-soulable CNT/GONR flexible conductive hybrid
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 何國川
Kuo-Chuan Ho
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 88
中文關鍵詞: 石墨烯奈米帶
外文關鍵詞: unzipping of CNTs
相關次數: 點閱:311下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一綠色且適用於工業化之石墨烯奈米帶製成,核心概念為選入適當嵌入分子鹽類有效降低大量硫酸使用,進一步達成產率接近百分之百的石墨烯奈米帶製成。
    可撓式導電元件為現今科技發展最具前瞻性的製技術之一,尤其以奈米碳基材最影前瞻性。 然而現今以奈米碳基材的可撓導電元件製成受限於其材料本身疏水性,因而在製程時造成環境汙染及降低其性能。本研究使用了奈米複合材料的概念,利用氧化石墨烯奈米帶和奈米碳管之性質,產生一水溶性且可撓式高導電複合材料。


    Graphene nanoribbons (GNRs) represent a unique form of carbon materials, and their exceptional properties have spurred intensive interest in many applications. The oxidative unzipping using the mixture of H2SO4 and KMnO4 has been demonstrated the most effective method to produced GNRs in a large quantity. However large amount of concentrated H2SO4 (normally 1 mg/ml of CNT concentration in H2SO4) were required to unzip the CNTs completely. The difficulty is due to the van der Waals forces between the coaxial graphene cylinders of CNTs. Therefore there is still a need to develop an environmentally friendly and scalable method to produce GNRs. Here we report a simple wet-chemistry-based oxidative process for producing a nearly 100% yield of GNRs by lengthwise unzipping the multi-walled CNTs (MWCNTs). While oxidative unzipping of MWCNTs has previously been achieved, we used very low amount of H2SO4 (10 mg/ml of CNT concentration in H2SO4) to unzip the MWCNTs effectively.
    Flexible electronics is a promising technology for convenient transportation and diverse deployment of large volume electronics. In the past few years, many reports have been demonstrated that carbon materials such as graphene and carbon nanotube (CNTs) can be used as the conductive materials for the paper-based flexible electronics. However, it is still difficult to further improve the device performance due to their limited film-based electrical conductance as a result of poor dispersion of carbon materials during the film fabrication. While the conventional preparation of carbon-based conductive paper is to add large amount of surfactants or organic solvent to obtain well dispersion stability, the non-conductive surfactants normally stay on substrates and reduce the overall electrical conductance. In addition, adding non-environmental-friendly surfactants or organic solvents will increase the cost. Here we report a facile fabrication of flexible and surfactant-free conductive paper using carbon nanotube and graphene nanoribbon (GNRs) composites.

    Abstract I Table of Content IV List of figure VI List of table X 1. Introduction 1 1.1 Introduction of graphene nanoribbon 1 1.2 Synthesis of graphene nanoribbon 5 1.2.1 Plasma etching of graphene 6 1.2.2 Metal-catalyzed cutting of graphene 8 1.2.3 Chemical vapor deposition 9 1.2.4 Chemical unzipping of CNTs 10 1.3 Introduction of carbon nanotube intercalation 11 1.4 Motivation of green and high yield synthesis of grahene nanoribbon 13 1.5 Approaching of green and high yield synthesis of graphene nanoribbon 15 1.6 Introduction of carbon-based flexible electronics 18 1.7 Motivation and approach of CNT/GONR conductive hybrid 22 2. Experimental methods and process 24 2.1 Synthesis of graphene nanoribbon 24 2.1.1 Experimental chemicals 24 2.1.2 Pretreatment 24 2.1.3 Oxidative CNTs unzipping 26 2.1.4 Purification 28 2.2 Fabrication of CNT-GONR conductive hybrid 29 2.3 Characterization 31 2.3.1 Scanning electron microscope (SEM) and sample preparation 31 2.3.2 High-resolution transmission electron microscope (HRTEM) and sample preparation 31 2.3.3 High-resolution X-ray photoemission spectra (XPS) and sample preparation 31 2.3.4 High-resolution X-ray diffraction (XRD) 32 2.3.5 Raman spectra 32 3. Result and discussion 33 3.1 Characterization of as-pretreated CNTs 33 3.1.1 Raman spectroscopy 33 3.1.2 X-ray photoelectron spectroscopy (XPS) 36 3.1.3 X-ray diffraction (XRD) 38 3.2 Characterization of as-produced graphene nanoribbon 40 3.2.1 Scanning electron microscope (SEM) and High-resolution transmission electron microscope (HRTEM) 41 3.2.2 X-ray diffraction (XRD) 44 3.2.3 X-ray photoelectron spectroscopy (XPS) 47 3.3 CNT-GONR conductive hybrids 51 3.3.1 Water solution processability studies of CNTs and as-produced GONRs 51 3.3.2 Electrical sheet resistance studie as-produced GONRs 53 3.3.3 Morphology and solution processability of CNT/GONR hybrids 56 3.3.4 Sheet resistance studied of CNT/GONR hybrids 59 3.3.5 LED-circuit demonstration of as-fabricated films 63 4. Conclusion 65 5. References 67

    1. Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P., Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters 2007, 98 (20), 206805.
    2. Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H., Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 2008, 319 (5867), 1229-1232.
    3. Balandin, A. A., Thermal properties of graphene and nanostructured carbon materials. Nat Mater 2011, 10 (8), 569-581.
    4. Son, Y.-W.; Cohen, M. L.; Louie, S. G., Half-metallic graphene nanoribbons. Nature 2006, 444 (7117), 347-349.
    5. Liu, J.; Kim, G.-H.; Xue, Y.; Kim, J. Y.; Baek, J.-B.; Durstock, M.; Dai, L., Graphene Oxide Nanoribbon as Hole Extraction Layer to Enhance Efficiency and Stability of Polymer Solar Cells. Advanced Materials 2014, 26 (5), 786-790.
    6. Huang, Y.-X.; Liu, X.-W.; Xie, J.-F.; Sheng, G.-P.; Wang, G.-Y.; Zhang, Y.-Y.; Xu, A.-W.; Yu, H.-Q., Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chemical Communications 2011, 47 (20), 5795-5797.
    7. Ismail, N. S.; Le, Q. H.; Yoshikawa, H.; Saito, M.; Tamiya, E., Development of Non-enzymatic Electrochemical Glucose Sensor Based on Graphene Oxide Nanoribbon – Gold Nanoparticle Hybrid. Electrochimica Acta 2014, 146 (0), 98-105.
    8. Rafiee, M. A.; Lu, W.; Thomas, A. V.; Zandiatashbar, A.; Rafiee, J.; Tour, J. M.; Koratkar, N. A., Graphene Nanoribbon Composites. ACS Nano 2010, 4 (12), 7415-7420.
    9. Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H., Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors. Physical Review Letters 2008, 100 (20), 206803.
    10. Ma, L.; Wang, J.; Ding, F., Recent Progress and Challenges in Graphene Nanoribbon Synthesis. ChemPhysChem 2013, 14 (1), 47-54.
    11. Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458 (7240), 872-876.
    12. Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H., Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458 (7240), 877-880.
    13. Elías, A. L.; Botello-Méndez, A. R.; Meneses-Rodríguez, D.; Jehová González, V.; Ramírez-González, D.; Ci, L.; Muñoz-Sandoval, E.; Ajayan, P. M.; Terrones, H.; Terrones, M., Longitudinal Cutting of Pure and Doped Carbon Nanotubes to Form Graphitic Nanoribbons Using Metal Clusters as Nanoscalpels. Nano Letters 2010, 10 (2), 366-372.
    14. Parashar, U. K.; Bhandari, S.; Srivastava, R. K.; Jariwala, D.; Srivastava, A., Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes. Nanoscale 2011, 3 (9), 3876-3882.
    15. Cano-Márquez, A. G.; Rodríguez-Macías, F. J.; Campos-Delgado, J.; Espinosa-González, C. G.; Tristán-López, F.; Ramírez-González, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantú, Y. I., Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes. Nano Letters 2009, 9 (4), 1527-1533.
    16. Xie, L.; Wang, H.; Jin, C.; Wang, X.; Jiao, L.; Suenaga, K.; Dai, H., Graphene Nanoribbons from Unzipped Carbon Nanotubes: Atomic Structures, Raman Spectroscopy, and Electrical Properties. Journal of the American Chemical Society 2011, 133 (27), 10394-10397.
    17. Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H., Facile synthesis of high-quality graphene nanoribbons. Nat Nano 2010, 5 (5), 321-325.
    18. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable aqueous dispersions of graphene nanosheets. Nat Nano 2008, 3 (2), 101-105.
    19. Wei, D.; Liu, Y.; Zhang, H.; Huang, L.; Wu, B.; Chen, J.; Yu, G., Scalable Synthesis of Few-Layer Graphene Ribbons with Controlled Morphologies by a Template Method and Their Applications in Nanoelectromechanical Switches. Journal of the American Chemical Society 2009, 131 (31), 11147-11154.
    20. SprinkleM; RuanM; HuY; HankinsonJ; Rubio Roy, M.; ZhangB; WuX; BergerC; de Heer, W. A., Scalable templated growth of graphene nanoribbons on SiC. Nat Nano 2010, 5 (10), 727-731.
    21. Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z.; Smith, D. J.; Okuno, Y.; Ohba, T.; Kanoh, H.; Kaneko, K.; Endo, M.; Terrones, H.; Dresselhaus, M. S.; Terrones, M., Bulk Production of a New Form of sp2 Carbon: Crystalline Graphene Nanoribbons. Nano Letters 2008, 8 (9), 2773-2778.
    22. Kato, T.; Hatakeyama, R., Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nat Nano 2012, 7 (10), 651-656.
    23. Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z.; Tour, J. M., Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano 2010, 4 (4), 2059-2069.
    24. Bower, C.; Kleinhammes, A.; Wu, Y.; Zhou, O., Intercalation and partial exfoliation of single-walled carbon nanotubes by nitric acid. Chemical Physics Letters 1998, 288 (2–4), 481-486.
    25. Ericson, L. M.; Fan, H.; Peng, H.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y.; Booker, R.; Vavro, J.; Guthy, C.; Parra-Vasquez, A. N. G.; Kim, M. J.; Ramesh, S.; Saini, R. K.; Kittrell, C.; Lavin, G.; Schmidt, H.; Adams, W. W.; Billups, W. E.; Pasquali, M.; Hwang, W.-F.; Hauge, R. H.; Fischer, J. E.; Smalley, R. E., Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers. Science 2004, 305 (5689), 1447-1450.
    26. Kovtyukhova, N. I.; Wang, Y.; Berkdemir, A.; Cruz-Silva, R.; Terrones, M.; Crespi, V. H.; Mallouk, T. E., Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat Chem 2014, 6 (11), 957-963.
    27. Sekitani, T.; Zschieschang, U.; Klauk, H.; Someya, T., Flexible organic transistors and circuits with extreme bending stability. Nat Mater 2010, 9 (12), 1015-1022.
    28. Bettinger, C. J.; Bao, Z., Organic Thin-Film Transistors Fabricated on Resorbable Biomaterial Substrates. Advanced Materials 2010, 22 (5), 651-655.
    29. Huitema, E.; Gelinck, G.; Van Lieshout, P.; Van Veenendaal, E.; Touwslager, F., Flexible electronic-paper active-matrix displays. Journal of the Society for Information Display 2005, 13 (3), 181-185.
    30. He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, E., Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultralight and Flexible Supercapacitor Electrodes. ACS Nano 2013, 7 (1), 174-182.
    31. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
    32. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006, 442 (7100), 282-286.
    33. Salvetat, J. P.; Bonard, J. M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L., Mechanical properties of carbon nanotubes. Appl Phys A 1999, 69 (3), 255-260.
    34. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321 (5887), 385-388.
    35. Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry. Applied Physics Letters 2010, 97 (25), 253110.
    36. Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y., Optical properties of single-wall carbon nanotubes. Synthetic Metals 1999, 103 (1–3), 2555-2558.
    37. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of graphene oxide paper. Nature 2007, 448 (7152), 457-460.
    38. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters 2009, 9 (12), 4359-4363.
    39. Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C., Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes. Nano Letters 2006, 6 (9), 1880-1886.
    40. Artukovic, E.; Kaempgen, M.; Hecht, D. S.; Roth, S.; Grüner, G., Transparent and Flexible Carbon Nanotube Transistors. Nano Letters 2005, 5 (4), 757-760.
    41. Cao, Q.; Kim, H.-s.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A., Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454 (7203), 495-500.
    42. Lee, J.; Tao, L.; Hao, Y.; Ruoff, R. S.; Akinwande, D., Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics. Applied Physics Letters 2012, 100 (15), 152104.
    43. Wang, C.; Chien, J.-C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A., Extremely Bendable, High-Performance Integrated Circuits Using Semiconducting Carbon Nanotube Networks for Digital, Analog, and Radio-Frequency Applications. Nano Letters 2012, 12 (3), 1527-1533.
    44. Hu, L.; Hecht, D. S.; Grüner, G., Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters 2004, 4 (12), 2513-2517.
    45. Sun, D.-M.; Liu, C.; Ren, W.-C.; Cheng, H.-M., A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors. Small 2013, 9 (8), 1188-1205.
    46. Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C., Solution Properties of Single-Walled Carbon Nanotubes. Science 1998, 282 (5386), 95-98.
    47. Green, A. A.; Hersam, M. C., Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation. Nano Letters 2009, 9 (12), 4031-4036.
    48. Rastogi, R.; Kaushal, R.; Tripathi, S. K.; Sharma, A. L.; Kaur, I.; Bharadwaj, L. M., Comparative study of carbon nanotube dispersion using surfactants. Journal of Colloid and Interface Science 2008, 328 (2), 421-428.
    49. Lotya, M.; King, P. J.; Khan, U.; De, S.; Coleman, J. N., High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano 2010, 4 (6), 3155-3162.
    50. Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society 2009, 131 (10), 3611-3620.
    51. Geng, H.-Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H., Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films. Journal of the American Chemical Society 2007, 129 (25), 7758-7759.
    52. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010, 39 (1), 228-240.
    53. Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W., Functionalized Carbon Nanotubes:  Properties and Applications. Accounts of Chemical Research 2002, 35 (12), 1096-1104.
    54. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials 2010, 22 (35), 3906-3924.
    55. Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J., Graphene Oxide Sheets at Interfaces. Journal of the American Chemical Society 2010, 132 (23), 8180-8186.
    56. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565.
    57. Thanh, Q. N.; Jeong, H.; Kim, J.; Kevek, J. W.; Ahn, Y. H.; Lee, S.; Minot, E. D.; Park, J.-Y., Transfer-Printing of As-Fabricated Carbon Nanotube Devices onto Various Substrates. Advanced Materials 2012, 24 (33), 4499-4504.
    58. Meng, Y.; Xu, X.-B.; Li, H.; Wang, Y.; Ding, E.-X.; Zhang, Z.-C.; Geng, H.-Z., Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon 2014, 70, 103-110.
    59. Lin, L.-Y.; Yeh, M.-H.; Tsai, J.-T.; Huang, Y.-H.; Sun, C.-L.; Ho, K.-C., A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. Journal of Materials Chemistry A 2013, 1 (37), 11237-11245.
    60. Cote, L. J.; Kim, J.; Tung, V. C.; Luo, J.; Kim, F.; Huang, J., Graphene oxide as surfactant sheets. Pure and Applied Chemistry 2010, 83 (1), 95-110.
    61. Rao, A. M.; Eklund, P. C.; Bandow, S.; Thess, A.; Smalley, R. E., Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 1997, 388 (6639), 257-259.
    62. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.
    63. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A.; Ruoff, R. S., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47 (1), 145-152.
    64. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M., Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials 2009, 19 (16), 2577.
    65. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano 2008, 3 (9), 563-568.
    66. Lin, Y.; Williams, T. V.; Connell, J. W., Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets. The Journal of Physical Chemistry Letters 2010, 1 (1), 277-283.
    67. Geim, A. K.; Grigorieva, I. V., Van der Waals heterostructures. Nature 2013, 499 (7459), 419-425.

    無法下載圖示 全文公開日期 2021/01/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE