簡易檢索 / 詳目顯示

研究生: 李偉廷
Wei-Ting Li
論文名稱: 銀奈米粒子/硼摻雜石墨烯奈米帶複合物在表面增強拉曼散射的應用
Silver Nanoparticle/Boron-doped Graphene Nanoribbon Nanocomposite for Effective Surface Enhanced Raman Scattering
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 江志強
Jyh-Chiang Jiang
劉沂欣
Hi-Shin Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 115
中文關鍵詞: 表面增強拉曼散射硼摻雜石墨烯奈米帶奈米複合材料葉酸分子
外文關鍵詞: Surface Enhanced Raman Scattering, B-GNR, Nanocomposite, folic acid
相關次數: 點閱:998下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼散射效應具有高靈敏度及高選擇性的特性,因此在生醫及化學分子檢測上受到注目。目前普遍接受的增強機制可分為電磁增強及化學增強,其中電磁增強機制主要歸因於金屬粒子本身提供的表面等離子共振效應,而化學機制則是由許多不同的效應所造成。因此,開發出可控制電磁、化學增強機制的奈米材料合成方法,及研究對於表面增強拉曼散射的基礎性質探討或是其創新應用技術都是一大邁進。石墨烯奈米帶為獨特結構的奈米碳材,可以藉由其寬度的變化來控制其電子屬性,使其具有在表面增強拉曼散射、能源、生醫應用上的潛力。
    本論文著眼於開發及設計出一個具備電磁增強及化學增強性質的奈米複合材料。透過文獻的搜索,我們選用了銀奈米粒子和硼摻雜石墨烯奈米帶來合成複合材料。首先我們透過化學裁剪法來合成寬度為4到5奈米的石墨烯奈米帶,此外藉由在大氣常壓下的前處理異質摻雜奈米碳材合成方法,我們成功合成出硼摻雜石墨烯奈米帶,並透過X光光電子能譜儀分析出其硼原子含量為1.4原子百分比。為了更有效的提升表面增強拉曼散射的效果,我們利用大氣常壓微電漿系統來輔助合成奈米複合物,並進行有系統的材料特性鑑定及其表面增強拉曼散射性能測試,其結果顯示出,在對於常見的羅丹明6G分子檢測上,我們的奈米複合材料可以達到低至10-12莫爾濃度的偵測極限,並計算出其增強因子數值為1.9 x 1012。除了單純對材料偵測性能的測試,我們更加有系統地利用不同特性的待測分子及奈米碳材去研究其化學增強效應的機制,研究成果發現在我們的系統下,材料吸附能力及其與雷射光源能量的共振效應為主要的化學增強機制。為了驗證此奈米複合材料在生醫分子感測上的可行性,我們也在表面增強拉曼散射的系統下來進行葉酸分子的偵測,發現其最低偵測濃度可以達到10-8 莫爾濃度。


    Surface-enhanced Raman scattering (SERS) provides high sensitivity and selectivity on molecule detection, making it attractive for biomedical and chemical detections. Generally there are two mechanisms to influence the SERS enhancement: electromagnetic mechanism (EM) created by the metals with surface plasmon resonance (SPR) property and chemical mechanism (CM) caused by several possible aspects. The development of synthetic method to produce nanostructures with controllable EM and CM properties will lead to important advances on both fundamental study and innovative applications for SERS-based biomedical detections. Graphene nanoribbons (GNRs) represent a unique structure of carbon nanomaterials with controlled electronic properties by tuning their widths, making them can be potentially useful as the SERS-active substrate and used in other applications including energy, composites, biomedical and electronics.
    Here we report a rational design to develop a SERS-active nanocomposite with improved EM and CM properties. Toward this goal, we prepared silver nanoparticle (AgNP)/Boron-doped GNR (B-GNR) composites using a sequential reaction route. First we synthesized GNRs with averaged width around 4 to 5 nm by chemical unzipping the singled-walled carbon nanotubes (SWCNTs). Additionally, the prepared GNRs were doped with B atoms by a controlled carbonthemic reaction under argon (Ar) flow at atmospheric pressure and the B dopant concentration was about 1.4 atomic percentage (atom%) according to the X-ray photoelectron spectroscopy (XPS) analysis. Ag NPs with 10 nm averaged size were decorated onto the B-GNRs surface through an atmospheric-pressure microplasma-assisted redox reaction. Detailed materials characterizations including transmission electron microscopy and UV-Vis spectroscopy show that Ag/B-GNR composites were successfully synthesized in our experiment. We further systematically studied the Raman response of the AgNP/B-GNR composite using Rhodamine 6G (R6G) as the Raman probe molecules. The result indicates that the AgNP/GNR composite shows superior SERS performance with low detection concentration of 10-12 M of R6G and high enhancement factor (EF) of 1.9×1012. We further systematically studied the CM enhancement via different probing molecules and substrates. Results show that SERS performance is strongly influenced by the laser alignment resonance effect and the substrate surface adsorption ability. To demonstrate the feasibility of using AgNP/B-GNR as the SERS substrate for detecting the folic acid (FA) molecule, we perform a series of SERS measurements under different FA concentrations. The result indicated that the as-produced nanohybrid can reach 10 nanomolar-level detection. Overall, our study provide the conception to design the applicable SERS substrates.

    Abstract I Contents VI List of figures IX List of tables XVI 1. Introduction 1 1.1 Surface-enhanced Raman scattering (SERS) 1 1.2 SERS mechanism 2 1.2.1 SERS Electromagnetic enhancement mechanism (EM) 2 1.2.2 SERS Chemical enhancement mechanism (CM) 3 1.3 Introduction of graphene nanorbbons (GNRs) 11 1.3.1 Synthesis of Graphene nanoribbons (GNRs) 12 1.4 Introduction of heteroatom-doped carbon materials 13 1.5 Synthesis of heteroatom-doped carbon materials 14 1.5.1 In situ doping 15 1.5.2 Post-treatment 21 1.6 Motivation of heteroatom-doped carbon materials by wet-chemistry-assisted pretreatment substitution reaction. 26 1.7 Introduction of metal/carbon materials nanohybirds. 27 1.7.1 Synthesis of metal/carbon materials nanohybirds. 29 1.8 Introduction of SERS-based Folic acid detection 32 2 Experimental section 34 2.1 Materials and Chemicals 34 2.2 Synthesis of SWGNRs 34 2.3 Synthesis of Boron-Doped Carbon Nanomaterials 35 2.4 Synthesis of carbon nanomaterials/AgNPs nanohybrids 36 2.5 Fabrication of SERS substrate 36 2.6 Adsorption ability of various materials toward Rh6G 37 2.7 SERS-based folic acid detection 37 2.8 Characterization 38 2.8.1 X-ray diffraction (XRD) 38 2.8.2 X-ray photoelectron spectroscopy (XPS) 38 2.8.3 Transmission electron microscope (TEM) 38 2.8.4 Raman spectroscopy 39 2.8.5 Ultraviolet-visible spectroscopy (UV-Vis) 39 2.8.6 Ultraviolet photoelectron spectroscopy (UPS) 39 3. Result and discussion 40 3.1 Characterization of Grpahene and B-doped Graphene 40 3.1.1 Raman spectroscopy 40 3.1.2 X-ray photoelectron spectroscopy 42 3.1.3 Transmission electron microscope (TEM) 44 3.2 Characterization of CNTs and B-doped CNTs 45 3.2.1 Raman spectroscopy 45 3.2.2 X-ray photoelectron spectroscopy 46 3.2.3 Transmission electron microscope 49 3.3 Characterization of GNRs, B-doped GNRs and annealing GNRs 50 3.3.1 Raman spectroscopy 50 3.3.2 X-ray photoelectron spectroscopy 53 3.3.3 X-ray diffraction (XRD) 57 3.3.4 Transmission electron microscope (TEM) 58 3.4 Characterization of silver nanoparticle/B-doped Graphene nanoribbon nanocomposite 59 3.4.1 UV-Visible spectroscopy and XPS spectroscopy 59 3.4.2 Transmission electron microscope (TEM) 60 4. Surface Enhanced Raman Scattering (SERS) 61 4.1 Effect of substrate material on SERS performance 61 4.2 SERS chemical mechanism enhancement study 70 4.2.1 SERS mechanism study on TPBi molecule 70 4.2.2 SERS mechanism study on crystal violet molecule 75 4.3 Effect of nanohybrids on SERS performance 80 5. SERS-based Folic Acid Detection 84 6. Conclusion 89 7. Reference 91

    1. Xu, H., et al., Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene. ACS nano, 2011. 5(7): p. 5338-5344.
    2. Fan, X., et al., Functionalized graphene nanoplatelets from ball milling for energy applications. Current Opinion in Chemical Engineering, 2016. 11: p. 52-58.
    3. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
    4. Jeanmaire, D.L. and R.P. Van Duyne, Surface raman spectroelectrochemistry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
    5. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc, 1977. 99(15): p. 5215-5217.
    6. Schatz, G.C., M.A. Young, and R.P. Van Duyne, Electromagnetic Mechanism of SERS, in Surface-Enhanced Raman Scattering: Physics and Applications, K. Kneipp, M. Moskovits, and H. Kneipp, Editors. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 19-45.
    7. Kelly, K.L., et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. Journal of Physical Chemistry B-Condensed Phase, 2003. 107(3): p. 668-677.
    8. Jensen, L., C.M. Aikens, and G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 2008. 37(5): p. 1061-1073.
    9. Vivoni, A., et al., Ab initio frequency calculations of pyridine adsorbed on an adatom model of a SERS active site of a silver surface. The Journal of Physical Chemistry B, 2003. 107(23): p. 5547-5557.
    10. Wu, D.Y., et al., Density functional theory study of surface‐enhanced Raman scattering spectra of pyridine adsorbed on noble and transition metal surfaces. Journal of Raman Spectroscopy, 2005. 36(6‐7): p. 533-540.
    11. Cardini, G. and M. Muniz-Miranda, Density functional study on the adsorption of pyrazole onto silver colloidal particles. The Journal of Physical Chemistry B, 2002. 106(27): p. 6875-6880.
    12. Cardini, G., et al., A density functional study of the SERS spectra of pyridine adsorbed on silver clusters. Theoretical Chemistry Accounts, 2007. 117(3): p. 451-458.
    13. Zayak, A., et al., Chemical Raman enhancement of organic adsorbates on metal surfaces. Physical review letters, 2011. 106(8): p. 083003.
    14. Ling, X., et al., Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Graphene‐Enhanced Raman Spectroscopy. Small, 2012. 8(9): p. 1365-1372.
    15. Feng, S., et al., Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Science Advances, 2016. 2(7): p. e1600322.
    16. Osawa, M., et al., Charge-transfer resonance Raman process in surface-enhanced Raman-scattering from P-aminothiophenol adsorbed on silver-herzberg-teller contribution. Journal of Physical Chemistry, 1994. 98(48): p. 12702-12707.
    17. Arenas, J.F., et al., Role of the electrode potential in the charge-transfer mechanism of surface-enhanced Raman scattering. The Journal of Physical Chemistry B, 2003. 107(47): p. 13143-13149.
    18. Dolgov, L., et al., Graphene-Enhanced Raman Scattering from the Adenine Molecules. Nanoscale research letters, 2016. 11(1): p. 197.
    19. Mao, H., et al., Mildly O 2 plasma treated CVD graphene as a promising platform for molecular sensing. Carbon, 2014. 76: p. 212-219.
    20. Barros, E. and M. Dresselhaus, Theory of Raman enhancement by two-dimensional materials: Applications for graphene-enhanced Raman spectroscopy. Physical Review B, 2014. 90(3): p. 035443.
    21. Yin, Y., et al., Significantly Increased Raman Enhancement on MoX2 (X= S, Se) Monolayers upon Phase Transition. Advanced Functional Materials, 2017.
    22. Han, M.Y., et al., Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters, 2007. 98(20): p. 206805.
    23. Barone, V., O. Hod, and G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nano letters, 2006. 6(12): p. 2748-2754.
    24. Son, Y.-W., M.L. Cohen, and S.G. Louie, Energy gaps in graphene nanoribbons. Physical review letters, 2006. 97(21): p. 216803.
    25. Chen, Z., et al., Graphene nano-ribbon electronics. Physica E: Low-dimensional Systems and Nanostructures, 2007. 40(2): p. 228-232.
    26. Datta, S.S., et al., Crystallographic etching of few-layer graphene. arXiv preprint arXiv:0806.3965, 2008.
    27. Jiao, L., et al., Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009. 458(7240): p. 877-880.
    28. Jacobberger, R.M., et al., Direct oriented growth of armchair graphene nanoribbons on germanium. Nature communications, 2015. 6.
    29. Li, Y.-S., et al., Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Scientific Reports, 2016. 6: p. 22755.
    30. Jiao, L., et al., Facile synthesis of high-quality graphene nanoribbons. Nature nanotechnology, 2010. 5(5): p. 321-325.
    31. Kosynkin, D.V., et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009. 458(7240): p. 872-876.
    32. Das, A., et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature nanotechnology, 2008. 3(4): p. 210-215.
    33. Santos, J.E., et al., Electronic doping of graphene by deposited transition metal atoms. Physical Review B, 2011. 84(8): p. 085430.
    34. Miwa, R., et al., Doping of graphene adsorbed on the a-SiO2 surface. Applied Physics Letters, 2011. 99(16): p. 163108.
    35. Anand, B., et al., Nonlinear optical properties of boron doped single-walled carbon nanotubes. Nanoscale, 2013. 5(16): p. 7271-7276.
    36. Yu, W.J., et al., Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. Nano letters, 2011. 11(11): p. 4759-4763.
    37. Ayala, P., et al., The doping of carbon nanotubes with nitrogen and their potential applications. Carbon, 2010. 48(3): p. 575-586.
    38. Lherbier, A., et al., Charge transport in chemically doped 2D graphene. Physical review letters, 2008. 101(3): p. 036808.
    39. Wei, D., et al., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters, 2009. 9(5): p. 1752-1758.
    40. Zheng, B., P. Hermet, and L. Henrard, Scanning tunneling microscopy simulations of nitrogen-and boron-doped graphene and single-walled carbon nanotubes. ACS nano, 2010. 4(7): p. 4165-4173.
    41. Wang, H., et al., Synthesis of boron‐doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small, 2013. 9(8): p. 1316-1320.
    42. Lv, R. and M. Terrones, Towards new graphene materials: doped graphene sheets and nanoribbons. Materials Letters, 2012. 78: p. 209-218.
    43. Wang, X., et al., Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society Reviews, 2014. 43(20): p. 7067-7098.
    44. Gierz, I., et al., Atomic hole doping of graphene. Nano letters, 2008. 8(12): p. 4603-4607.
    45. Wei, D., et al., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano lett, 2009. 9(5): p. 1752-1758.
    46. Ayala, P., et al., CVD growth of single‐walled B‐doped carbon nanotubes. physica status solidi (b), 2008. 245(10): p. 1935-1938.
    47. Li, J.-C., et al., Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes. Nanoscale, 2014. 6(20): p. 12065-12070.
    48. Chang, C.-K., et al., Band gap engineering of chemical vapor deposited graphene by in situ BN doping. ACS nano, 2013. 7(2): p. 1333-1341.
    49. Yu, D., et al., Metal-free carbon nanomaterials become more active than metal catalysts and last longer. The journal of physical chemistry letters, 2010. 1(14): p. 2165-2173.
    50. Borowiak-Palen, E., et al., Efficient production of B-substituted single-wall carbon nanotubes. Chemical physics letters, 2003. 378(5): p. 516-520.
    51. Liu, Y., et al., Elemental superdoping of graphene and carbon nanotubes. Nature communications, 2016. 7.
    52. Wang, H., et al., Nitrogen-doped graphene nanosheets with excellent lithium storage properties. Journal of Materials Chemistry, 2011. 21(14): p. 5430-5434.
    53. Borowiec, J. and J. Zhang, Hydrothermal Synthesis of Boron-Doped Graphene for Electrochemical Sensing of Guanine. Journal of The Electrochemical Society, 2015. 162(12): p. B332-B336.
    54. Su, Y., et al., Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon, 2013. 62: p. 296-301.
    55. Wang, B., et al., Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties. Carbon, 2009. 47(8): p. 2112-2115.
    56. Rani, P. and V. Jindal, Designing band gap of graphene by B and N dopant atoms. RSC Advances, 2013. 3(3): p. 802-812.
    57. Liang, X., et al., Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS. Physical Chemistry Chemical Physics, 2015. 17(15): p. 10176-10181.
    58. Liang, X., et al., Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Nanoscale, 2015. 7(47): p. 20188-20196.
    59. Ku, K., et al., Characterization of graphene-based supercapacitors fabricated on Al foils using Au or Pd thin films as interlayers. Synthetic Metals, 2010. 160(23): p. 2613-2617.
    60. Seol, M., et al., Nano-Design of 3D Electrodes for Highly Efficient Quantum Dot-Sensitized Solar Energy Conversion. Journal of The Electrochemical Society, 2014. 161(12): p. H809-H815.
    61. Fan, Z., R. Kanchanapally, and P.C. Ray, Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. The Journal of Physical Chemistry Letters, 2013. 4(21): p. 3813-3818.
    62. Lan, N.T., et al., Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization. Journal of Alloys and Compounds, 2014. 615: p. 843-848.
    63. Zhou, H., et al., Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes. The Journal of Physical Chemistry C, 2011. 115(23): p. 11348-11354.
    64. Shen, J., et al., Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano research, 2010. 3(5): p. 339-349.
    65. Fu, W.L., S.J. Zhen, and C.Z. Huang, Controllable preparation of graphene oxide/metal nanoparticle hybrids as surface-enhanced Raman scattering substrates for 6-mercaptopurine detection. RSC Advances, 2014. 4(31): p. 16327-16332.
    66. Goncalves, G., et al., Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials, 2009. 21(20): p. 4796-4802.
    67. Richmonds, C. and R.M. Sankaran, Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Applied Physics Letters, 2008. 93(13): p. 131501.
    68. Park, S.-J. and J.G. Eden, 13–30 micron diameter microdischarge devices: Atomic ion and molecular emission at above atmospheric pressures. Applied Physics Letters, 2002. 81(22): p. 4127-4129.
    69. Mohamed, M., et al., Excimer emission from microhollow cathode argon discharges. Journal of Physics D: Applied Physics, 2003. 36(23): p. 2922.
    70. Lin, L. and Q. Wang, Microplasma: a new generation of technology for functional nanomaterial synthesis. Plasma Chemistry and Plasma Processing, 2015. 35(6): p. 925-962.
    71. Becker, K.H., K.H. Schoenbach, and J.G. Eden, Microplasmas and applications. Journal of Physics D: Applied Physics, 2006. 39(3): p. R55.
    72. Mariotti, D. and R.M. Sankaran, Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 2010. 43(32): p. 323001.
    73. Ren, W., Y. Fang, and E. Wang, A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. Acs Nano, 2011. 5(8): p. 6425-6433.
    74. Low, P.S., W.A. Henne, and D.D. Doorneweerd, Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Accounts of chemical research, 2007. 41(1): p. 120-129.
    75. Hu, C., et al., Fabrication of reduced graphene oxide and sliver nanoparticle hybrids for Raman detection of absorbed folic acid: a potential cancer diagnostic probe. ACS applied materials & interfaces, 2013. 5(11): p. 4760-4768.
    76. Saito, R., et al., Double resonance Raman spectroscopy of single-wall carbon nanotubes. New Journal of Physics, 2003. 5(1): p. 157.
    77. Li, Y.-S., et al., Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Scientific reports, 2016. 6.
    78. Xing, M., et al., Highly-dispersed boron-doped graphene nanoribbons with enhanced conductibility and photocatalysis. Chemical Communications, 2014. 50(50): p. 6637-6640.
    79. Sheng, Z.-H., et al., Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry, 2012. 22(2): p. 390-395.
    80. Ryu, S., et al., Raman spectroscopy of lithographically patterned graphene nanoribbons. arXiv preprint arXiv:1201.4298, 2012.
    81. Mei, T., et al., One-pot synthesis of carbon nanoribbons and their enhanced lithium storage performance. Journal of Materials Chemistry A, 2014. 2(30): p. 11974-11979.
    82. Wu, T., et al., Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst. Nanoscale, 2011. 3(5): p. 2142-2144.
    83. Liang, A., et al., The surface-plasmon-resonance effect of nanogold/silver and its analytical applications. TrAC Trends in Analytical Chemistry, 2012. 37: p. 32-47.
    84. Ameer, F.S., C.U. Pittman Jr, and D. Zhang, Quantification of resonance Raman enhancement factors for rhodamine 6G (R6G) in water and on gold and silver nanoparticles: Implications for single-molecule R6G SERS. The Journal of Physical Chemistry C, 2013. 117(51): p. 27096-27104.
    85. Roguska, A., et al., Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO 2-nanotubes/Ti substrate. Applied Surface Science, 2011. 257(19): p. 8182-8189.
    86. Jensen, L. and G.C. Schatz, Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. The Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
    87. Ling, X., et al., Can graphene be used as a substrate for Raman enhancement? Nano letters, 2009. 10(2): p. 553-561.
    88. Huh, S., et al., UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. ACS Nano, 2011. 5(12): p. 9799-9806.
    89. Yin, Y., et al., Significantly Increased Raman Enhancement on MoX2 (X= S, Se) Monolayers upon Phase Transition. Advanced Functional Materials, 2017. 27(16).
    90. Barman, B.K. and K.K. Nanda, Hexamethylenetetramine mediated simultaneous nitrogen doping and reduction of graphene oxide for a metal-free SERS substrate. RSC Advances, 2014. 4(83): p. 44146-44150.
    91. Sivashanmugan, K., et al., Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green. Sensors and Actuators B: Chemical, 2015. 207: p. 430-436.
    92. Ding, G., et al., Graphene oxide-silver nanocomposite as SERS substrate for dye detection: effects of silver loading amount and composite dosage. Applied Surface Science, 2015. 345: p. 310-318.
    93. Hao, Q., et al., Tuning surface-enhanced Raman scattering from graphene substrates using the electric field effect and chemical doping. Applied physics letters, 2013. 102(1): p. 011102.
    94. Huang, S., et al., Molecular selectivity of graphene-enhanced Raman scattering. Nano letters, 2015. 15(5): p. 2892-2901.
    95. Li, W.-H., X.-Y. Li, and N.-T. Yu, Surface-enhanced resonance hyper-Raman scattering and surface-enhanced resonance Raman scattering of dyes adsorbed on silver electrode and silver colloid: a comparison study. Chemical physics letters, 1999. 312(1): p. 28-36.
    96. Zhang, G., et al., Contribution of oligomer/carbon dots hybrid semiconductor nanoribbon to surface-enhanced Raman scattering property. Applied Surface Science, 2016. 364: p. 660-669.
    97. Fan, W., et al., Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale, 2014. 6(9): p. 4843-4851.
    98. Zhou, Y., et al., Graphene–silver nanohybrids for ultrasensitive surface enhanced Raman spectroscopy: size dependence of silver nanoparticles. Journal of Materials Chemistry C, 2014. 2(33): p. 6850-6858.
    99. Li, Y., et al., A facile fabrication of large-scale reduced graphene oxide–silver nanoparticle hybrid film as a highly active surface-enhanced Raman scattering substrate. Journal of Materials Chemistry C, 2015. 3(16): p. 4126-4133.
    100. Guo, J., et al., Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity. Applied Surface Science, 2017. 396: p. 1130-1137.
    101. Zhang, C.-y., et al., Graphene oxide-wrapped flower-like sliver particles for surface-enhanced Raman spectroscopy and their applications in polychlorinated biphenyls detection. Applied Surface Science, 2017. 400: p. 49-56.
    102. Boca-Farcau, S., et al., Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Molecular pharmaceutics, 2013. 11(2): p. 391-399.
    103. Liu, Z., et al., Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Physical Chemistry Chemical Physics, 2013. 15(8): p. 2961-2966.
    104. Castillo, J.J., et al., Silver‐capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory. Journal of Raman Spectroscopy, 2015. 46(11): p. 1087-1094.
    105. Wu, X., et al., SERS encoded nanoparticle heterodimers for the ultrasensitive detection of folic acid. Biosensors and Bioelectronics, 2016. 75: p. 55-58.
    106. Yang, J., et al., A sandwich substrate for ultrasensitive and label-free SERS spectroscopic detection of folic acid/methotrexate. Biomedical microdevices, 2014. 16(5): p. 673-679.
    107. Stokes, R.J., et al., Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum. Applied spectroscopy, 2008. 62(4): p. 371-376.
    108. Castillo, J.J., et al., Adsorption and vibrational study of folic acid on gold nanopillar structures using surface-enhanced Raman scattering spectroscopy. Nanomaterials and Nanotechnology, 2015. 5: p. 29.
    109. Sun, Z.J., Z.W. Jiang, and Y.F. Li, Poly (dopamine) assisted in situ fabrication of silver nanoparticles/metal–organic framework hybrids as SERS substrates for folic acid detection. RSC Advances, 2016. 6(83): p. 79805-79810.
    110. Ahmad, R., et al., Water-soluble plasmonic nanosensors with synthetic receptors for label-free detection of folic acid. Chemical Communications, 2015. 51(47): p. 9678-9681.

    無法下載圖示 全文公開日期 2022/07/31 (校內網路)
    全文公開日期 2027/07/31 (校外網路)
    全文公開日期 2027/07/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE