簡易檢索 / 詳目顯示

研究生: 陳瑋呈
Wei-Cheng Chen
論文名稱: 同步式與分段式互穿網型結構之環氧樹脂/交鏈CTBN奈米複材之微相形態及其性質研究
Morphologies and properties of the IPN-structured epoxy resin/vulcanized CTBN nanocomposites through sequential and simultaneous processes
指導教授: 許應舉
Ying-Gev Hsu
口試委員: 謝國煌
Kuo-Huang Hsieh
林河木
Ho-Mu Lin
黃介銘
Jieh-Ming Huang
陳耿明
Keng-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 66
中文關鍵詞: 互穿型網狀高分子環氧樹脂交鏈CTBN穿透式電子顯微鏡拉伸韌性
外文關鍵詞: Interpenetrating polymer networks, epoxy, Cross-Linked CTBN, TEM, tensile toughness
相關次數: 點閱:272下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將鄰-甲酚環氧樹脂(o-cresol novolac epoxy resin, CNE)、4,4’-二胺基二苯基碸(4,4’-diamino diphenyl sulfone, DDS)、2-甲基咪唑(2-methyl imidazole, 2-MI)、端羧基丁腈橡膠(carboxyl-terminated butadiene acrylonitrile rubber, CTBN)、過氧化苯甲醯基(benzoyl peroxide, BPO)混合均勻,調製成透明黏液─CNE/DDS/2-MI/CTBN/BPO─後加熱進行熱硬化反應,使CNE/DDS/2-MI及CTBN/BPO兩種不同機制的聚合反應以分段式或同步式引發相分離,製備二種系列─SEQ-IPN(sequential-IPN)及SIM-IPN(simultaneous-IPN)─之IPN結構Epoxy/CL-CTBN(Cross-Linked CTBN)奈米複材,以DSC、IR、TEM、SAXS、DMA、Instron與TGA等儀器測定SIM-IPN及SEQ-IPN系列複材之形態和各種物性。實驗結果發現,經由TEM與SAXS觀察分析,SIM-IPN系列複材中CL-CTBN是以奈米級尺寸分佈在環氧基質中,形成兩相互相穿梭程度高且非常緻密的微細構造;在DMA之分析測試中,SIM-IPN之α-relaxation peak形狀更為寬廣且Tg點更高,表示在相同硬化條件下其反應性更佳,架橋密度更高,影響所及β-與ω-relaxation的運動過程受到抑制,於tan δ曲線上較不顯著;而就熱安定性與拉伸韌性而言,SIM-IPN系列複材的特性均明顯優於相對應之傳統混掺與SEQ-IPN系列複材。


    The interpenetrating-network-structured (IPN-structured) epoxy resin/vulcanized CTBN composites were prepared. By in situ heat-curing the homogeneous mixture of o-cresol novolac epoxy resin (CNE), 4,4’-diaminodiphenyl sulfone (DDS), carboxyl-terminated butadiene acrylonitrile rubber (CTBN), 2-methyl imidazole (2-MI), and benzoyl peroxide (BPO) via respective sequential and simultaneous processes involving chemically induced phase separation (CIPS), the nanocomposites with different morphologies were afforded. The epoxy network was obtained by step-growth polyaddition polymerization of CNE and DDS catalyzed by 2-MI, while the vulcanized CTBN network was obtained by free radical polymerization of CTBN initiated by BPO. The morphologies and properties of the IPN-structured nanocomposites from the two different processes were investigated and analyzed by DSC, IR, TEM, SAXS, DMA, Instron, and TGA...etc. It was found that for the nanocomposites, SIM-IPN (simultaneous-IPN) series, obtained from the simultaneous process, the nanometer-sized domain of the dispersed vulcanized CTBN in the CNE/DDS matrix was smaller and evener than that of nanocomposites, SEQ-IPN (sequential-IPN) series, obtained from the sequential process. The properties such as dynamic mechanical property, thermal resistance, and tensile toughness of the SIM-IPN series were improved and enhanced more significantly than that of the SEQ-IPN series and the conventional blends.

    中文摘要……………………………………………………..…..……….I 英文摘要…………………………….…………………………………. II 誌謝…………………………………….………………………………III 目錄………………………………………..……………………………IV 附圖索引…………………...……………….……………….….………VI 附表索引………………………………………...………….………...VIII 一、 前言--------------------------------------------------------------------1 二、 文獻回顧--------------------------------------------------------------4 2.1 液態橡膠增韌環氧樹脂之研究-----------------------------4 2.2 互穿網絡結構之增韌研究-----------------------------------7 三、 基本原理------------------------------------------------------------10 3.1 環氧樹脂之硬化反應---------------------------------------10 3.1.1 2-MI之催化作用--------------------------------------13 3.2 CTBN橡膠之交鏈反應-------------------------------------14 3.3 互穿網狀型高分子------------------------------------------17 3.4 SAXS分析IPN結構之原理--------------------------------20 四、 實驗部分------------------------------------------------------------23 4.1 實驗藥品------------------------------------------------------23 4.2 複合材料製備------------------------------------------------25 4.3 儀器測試與分析---------------------------------------------27 五、 結果與討論---------------------------------------------------------30 5.1 複合材料之反應性分析------------------------------------30 5.1.1 CNE/DDS與CTBN之硬化反應鑑定--------------30 5.1.2 SIM-IPN系列複材之製備條件分析---------------33 5.1.3 SEQ-IPN系列複材之製備條件分析---------------37 5.2 複合材料之結構鑑定---------------------------------------39 5.3 微相形態分析------------------------------------------------41 5.4 小角度X光散射分析---------------------------------------44 5.5 動態機械性質分析------------------------------------------48 5.6 熱性質分析---------------------------------------------------55 5.7 拉伸韌性分析------------------------------------------------60 六、 結論------------------------------------------------------------------63 七、 參考文獻------------------------------------------------------------64

    [1] P. Castan. Amer Chem Soc, Div Org Coatings Plast ChemMinn 1969, 29, 22.
    [2] K. Mimura, H. Ito, H. Fujioka. Polymer 2001, 42, 9223.
    [3] S. Ritzenthaler, E. Girard-Reydet, J. P. Pascault. Polymer 2000, 41, 6375.
    [4] D. S. Kim, K. Cho, J. K. Kim, C. E. Park. Polym Eng Sci 1996, 36, 755.
    [5] K. Mimura, H. Ito, H. Fujioka. Polymer 2000, 41, 4451.
    [6] J. L. Hedrick, I. Yilgor, G. L. Wilkes, J. E. McGrath. Polym Bull 1985, 13, 201.
    [7] J. L. Hedrick, I. Yilgor, M. Jurek, J. C. Hedrick, G. L. Wilkes, J. E. McGrath. Polymer 1991, 32, 2020.
    [8] N. Biolley, T. Pascal, B. Sillion. Polymer 1994, 35, 558.
    [9] W. D. Bascom, R. L. Cottington, R. L. Jones, P. J. Peyser. J Appl Polym Sci 1975, 19, 2545.
    [10] Y. Huang, A.J. Kinloch. J Mater Sci 1992, 27, 2763.
    [11] B. J. P. Jansen, S. Rastogi, H. E. H. Meijer, P. J. Lemstra. Macromolecules 2001, 34, 3998.
    [12] B. J. P. Jansen, S. Rastogi, H. E. H. Meijer, P. J. Lemstra. Macromolecules 1999, 32, 6290.
    [13] L.H. Sperling, D.W. Taylor, M. L. Kirkpatrick, H. F. George, D.R. Bradman. J Appl Polym Sci 1970, 14, 73.
    [14] S. C. Kim, D. Klempner, K. C. Frisch. Macromolecules 1976, 9, 258.
    [15] B. J. P. Jansen, H. E. H. Meijer, P. J. Lemstra. Polymer 1999, 40, 2917.
    [16] R. W. Venderbosch, H.E.H. Meijer, P. J. Lemstra. Polymer 1994, 33, 4349.
    [17] N. H. Nae. J Appl Polym Sci 1986, 26, 54.
    [18] Z. N. Sanjana, L. Kupechella. Polym Eng Sci 1985, 25, 1148
    [19] G. Levita, A. Marchetti, E. Butta. Polymer 1985, 26, 1110.
    [20] S. SanKaran. J Appl Polym Sci 1990, 39, 1635.
    [21] D. Verchere, H. Sautereau, J. P. Pascault. J Appl Polym Sci 1990, 41, 467.
    [22] F. J. McGarry, A. M. Willner. Org Coat Plast Chem 1968, 28, 512.
    [23] S. C. Kunz, P. W. R. Beaumont. J Mater Sci 1981, 16, 3141.
    [24] A. J. Kinloch, S. J. Shaw , D. A. Tod, D. L. Hunston. Polymer 1983, 24, 1341.
    [25] A. J. Kinloch, S. J. Shaw , D. L. Hunston. Polymer 1983, 24, 1355.
    [26] A. Takemura, K. Shiozawa, B. Tomita, H. Mizumachi. J Appl Polym Sci 1986, 31, 1351.
    [27] R. A. Pearson, A. F. Yee. J Mater Sci 1991, 26, 3828.
    [28] B. A. Rozenberg, G. M. Sigalov. Polym Adv Tech 1995, 7, 356.
    [29] K. C. Teng, F. C. Chang. Polymer 1996, 37, 2385.
    [30] H. R. Kim, B. Y. Myung, T. H. Yoon, K. H. Song. J Appl Polym Sci 2002, 84, 1556.
    [31] B. Russell, R. Chartoff. Polymer 2005, 46, 785.
    [32] R. Thomas, S. Durix, C. Sinturel, T. Omonov, S. Goossens, G. Groeninckx, P. Moldenaers, S. Thomas. Polymer 2007, 48, 1695.
    [33] R. Thomas, D. Yumei, H. Yuelong, Y. Le, P. Moldenaers, Y. Weimin, T. Czigany, S. Thomas. Polymer 2008, 49, 478.
    [34] H. L. Frisch. J Polym Sci Part B Polym Lett. 1969, 7, 775.
    [35] L. H. Sperling. Interpenetrating Polymer Networks and Related Marterials; Plenum press: New York, 1981.
    [36] K. H. Hsieh, J. L. Han. J Polym Sci Part B Polym Phys 1990. 28. 623
    [37] M. S. Lin, S. T. Lee. Polymer 1997, 38, 53.
    [38] P. H. Sung, S. Y.Wu. Polymer 1998, 39, 7033.
    [39] O. Gryshchuk, J. Karger-Kocsis. J of Polym Sci Part A Polym Chem 2004, 42, 5471.
    [40] Y. G. Hsu, C. W. Liang. J Appl Polym Sci 2007, 106, 1576.
    [41] S. K. Ooi, W. D. Cook, G. P. Simon, C. H. Such. Polymer 2000, 41, 3639.
    [42] G. C. Gemeinhardt, R. B. Moore. Macromolecules 2005, 38, 2813.
    [43] J. H. An, M. Fernandez, L. H. Sperling. Macromolecules 1987, 20, 191.
    [44] S. Tan, D. Zhang, E. Zhou. Polym Int 1997, 42, 90.
    [45] X. Yu, J. Wang, G. Gao, J. Tang, F. Li, J. Zhang, X. Tang. J Appl Polym Sci 1999, 74, 1898.
    [46] G. Sanz, J. Garmendia, M.A. Andres, I. Mondragon. J Appl Polym Sci 1995, 55, 75.
    [47] I. Harismendy, R. Miner, A. Valea, R. LIano-Ponte, F. Mujika. Polymer 1997, 38, 5573.
    [48] D. Colombini, G. Merle, J.J. Martinez, E. Girard-Reydet, J. P. Pascault, J.F. Gerard. Polymer 1999, 40, 935.
    [49] C. W. Wise, W. D. Cook, A. A. Goodwin. Polymer 2000, 41, 4625.
    [50] D. Colombini, J. J. Martinez-Vega, G. Merle. Polym Bull 2002, 48, 75.
    [51] G. Tripathi, D. Srivastava. Mater Sci Eng 2007, 443, 262
    [52] C. Plesse, F. Vidal, C. Gauthier, J. M. Pelletier, C. Chevrot, D. Teyssie. Polymer 2007, 48, 696.
    [53] J. M. Charlesworth. Polym Eng Sci 1988, 28, 221.
    [54] F. R. Eirich. Science and Technology of Rubber; Academic Press: New York, 1978.
    [55] A. P. Mathew, S. Packirisamy, S. Thomas. Polym Degrad Stab 2001, 72, 423.
    [56] 葉明國,橡膠化學與技術,茂文圖書有限公司,1983。
    [57] S. Balakrishnan, P. R. Start, D. Raghavan, S. D. Hudson. Polymer 2005, 46, 11255.
    [58] J. Wang, M. P. Laborie, M. P. Wolcott. J Appl Polym Sci 2007, 105, 1289.
    [59] L. Sun, S. S. Pang, A. M. Sterling, I. I. Negulescu, M. A. Atubblefield. J Appl Polym Sci 2002, 86, 1911.
    [60] E. Diez-Pena, I. Quijada-Garrido, P. Frutos, J.M. Barrales-Rienda. Macromolecules 2002, 35, 2667.
    [61] G. Ragosta, M. Abbate, P. Musto. G. Scarinzi, L.Mascia. Polymer 2005, 46, 10506.
    [62] R. Sobry, Y. Rassel, F. Fontaine, J. Ledent, J. Liegeois. J Appl Crystallogr 1991, 24, 692.

    QR CODE