簡易檢索 / 詳目顯示

研究生: 林優恩
Hyurin - Oktavia
論文名稱: 奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力、玻璃轉移溫度、体積收縮及內部可染色性之影響研究
Effects of Nano-scale and Submicron-scale Core-shell Rubber Additives, Inorganic Silica/Organic Polymer Core-shell Particle, and Montmorillonite Clay on the Cure Kinetics, Glass Transition Temperatures, Volume Shrinkage, and Internal Pigmentability for Unsaturated Polyester, Vinyl Ester, and Epoxy Resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 286
中文關鍵詞: 核殼型橡膠DSCFTIRMMT體積收縮玻璃轉移溫度
外文關鍵詞: core-shell rubber (CSR), low-profile additive
相關次數: 點閱:278下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之目的,乃探討四種特用添加劑,分別為:(1)奈米級及次微米級核殼型橡膠(core-shell rubber)添加劑(2)無機矽膠/有機高分子核殼型顆粒及(3)矽烷改質蒙特納石黏土(montmorillonite clay,MMT)(4)Raft型CSR,其對苯乙烯/不飽和聚脂(或乙烯基酯)/特用添加劑三成份系統及環氧樹脂/硬化劑/特用添加劑三成份系統之之聚合固化動力、抗體積收縮特性及玻璃轉移溫度等之影響。實驗之結果,吾人將配合苯乙烯/乙烯基脂樹脂/特用添加劑三成份系統在未反應前之相容性,聚合固化後之反應轉化率等因素之整合性實驗測量結果加以解釋。


    The effects of nano-scale and submicron-scale core shell rubbers (CSR), inorganic silica gel/organic polymer core-shell particle (CSP), silane-treated montmorillonite clay (MPSi-MMT) and alkyl-ammonium treated montmorillonite clay (AMMT) as low-profile additives (LPA) on the cure kinetics, glass transition temperatures and volume shrinkage for styrene (ST)/unsaturated polyester (or vinyl ester)/additive ternary systems and epoxy/curing agent/additive ternary systems have been investigated.
    The reaction kinetics during the cure was measured by Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectrometry (FTIR). Based on the Takayanagi mechanical models, the glass transition temperature in each region of the cured samples for ST/UP (or VER)/additive ternary systems and epoxy/curing agent/additive ternary systems was measured by the Dynamic Mechanical Analysis (DMA). The volume shrinkage of the cured sample was also measured using the density method.
    (Keyword: core-shell rubber (CSR) ; low-profile additive (LPA) ; montmorillonite (MMT) ; unsaturated polyester (UP) ; vinyl ester resin (VER) ; epoxy resin;curing kinetics ; glass transition temperature ; volume shrinkage)

    ACKNOWLEDGEMENT………………………………………………………..i CONTENTS………………………………………………………………………ii LIST OF TABLES..……………………………………………………………...vii LIST OF FIGURES..…………………………………………………………......xi ABSTRACT……………………………………………………………………xxvi CHAPTER I .............................................................................................................1 CHAPTER II ............................................................................................................3 II.1 UP ..................................................................................................................3 II.2 Vinyl Ester Resins .........................................................................................5 II.3 Epoxy Resins (EPR) ......................................................................................6 II.4 Crosslinking Copolymerization of Styrene and Unsaturated Polyester ........8 II.5 Kinetics Model for Unsaturated Polyester Resins .......................................11 II.6 Curing of Unsaturated Polyester Resin .......................................................16 II.7 Curing of Low-Shrink Polyester Resins ......................................................17 II.8 Effects of Core-Shell Rubber Tougheners ...................................................18 II.9 Montmorillonite Clay ..................................................................................21 II.10 Glass Transition Temperature for St/UP/LPA Ternary Systems ...............25 II.11 RAFT Polymerization ................................................................................26 CHAPTER III ........................................................................................................28 III.1 Materials .....................................................................................................28 III.1.1 Unsaturated Polyester (UP) Resins ......................................................28 III.1.2 Epoxy Resins (EPR) ............................................................................29 iii III.1.3 Vinyl Ester Resins (VER) ....................................................................30 III.1.4 Core Shell Rubber (CSR) Additive .....................................................32 III.1.5 Core Shell Particle (CSP) Additive : Si-PMA .....................................32 III.1.6 Montmorillonite Clay (MMT) PK-805, Pai Kong Tech Nanotechnology Co. ...........................................................................33 III.1.7 Sodium Chloride (NaCl), ACROS ......................................................33 III.1.8 Silane coupling agent : A-174, OSI Specialties...................................34 III.1.9 Aminolauric acid (12-aminododecanoic acid), Sigma-Aldrich ...........34 III.1.10 Styrene, ACROS ...............................................................................34 III.1.11 4,4'-methylenedianiline / 4,4'-diaminodiphenylmethane (DDM), ACROS ...............................................................................................34 III.1.12 4,4’- diaminodyphenyl sulfone (DDS), ACROS ..............................35 III.1.13 Initiator : Tert-butyl peroxybenzoate (TBPB), ACROS ....................35 III.1.14 Dichloromethane, ACROS ................................................................35 III.2 Instrumentation ...........................................................................................36 III.2.1 Differential Scanning Calorimeter, DSC Q20 .....................................36 III.2.2 Fourier Transform Infrared Spectroscopy (FTIR) , Nicolet iS10 .......36 III.2.3 Dynamic Mechanical Analyzer, DMA 2980 .......................................36 III.2.4 Vacuum pump (G-50DA). ...................................................................36 III.2.5 Thermostated silicon oil bath...............................................................36 III.2.6 Vacuum oven .......................................................................................36 III.2.7 Aluminum mold ...................................................................................36 III.2.8 Aluminium plate, which has size of 50x50x2 mm3 .............................36 iv III.3 Procedure of Experiment ............................................................................36 III.3.1 Modification of MMT Clay .................................................................36 III.3.2 Sample Preparation for Cure Kinetics Study .......................................38 III.3.3 Cured Sample Preparation for Volume Shrinkage Study ....................38 III.3.4 Cured Sample Preparation for Glass Transition and WAXS Study ....40 III.3.5 Internal Pigmentability Sample Preparation ........................................42 III.3.6 Optical Microscope Sample Preparation .............................................43 III.3.7 Differential Scanning Calorimetry (DSC) Experiment .......................43 III.3.8 Fourier Transform Infrared Spectroscopy (FTIR) Experiment ..........45 III.3.9 Dynamic Mechanical Analysis (DMA) Experiment ...........................46 III.3.10 Characterization of MMT ..................................................................47 III.4 Experimental Calculation ...........................................................................50 III.4.1 Sample Composition Calculation ........................................................50 III.4.2 The Overall Reaction Rate and Total C=C Bonds Conversion Calculation by DSC Experiment ........................................................51 III.4.3 The Styrene, UP / VER and Total C=C Conversion Calculation by FTIR Experiment ................................................................................52 III.4.4 Volume Shrinkage Calculation of Cured Binary and Ternary Systems ............................................................................................................54 III.4.5 TGA Experiment Calculation ..............................................................54 III.4.6 Characterization of Silane-treated MMT by FTIR ..............................54 CHAPTER IV ........................................................................................................57 IV.1 Compatibility for St/UP (or VER)/Additive Uncured Ternary System and Epoxy/DDM (or DDS)/ Additive Uncured Ternary System .....................57 v IV.2 Microstructure Morphology of Cured Sample ...........................................63 IV.2.1 St/UP and St/VER Binary Systems .....................................................63 IV.2.2 St/UP/Silane-treated MMT Ternary System .......................................67 IV.3 DSC Reaction Kinetics Study ....................................................................72 IV.3.1 Comparison of Neat UP and Neat VER Systems ................................72 IV.3.2 St/UP(MA-PA-PG)/Silane-treated MMT Ternary System .................76 IV.3.3 St/VER/E7-15 Ternary System ...........................................................80 IV.4 Reaction Kinetics Study by FTIR ..............................................................84 IV.4.1 Calibration Curve ................................................................................84 IV.4.2 Styrene, Unsaturated Polyester and Total C=C bonds Conversion Calculation ..........................................................................................93 IV.5 Characterization of MMT by FTIR ............................................................98 IV.5.1 Silane-treated MMT ............................................................................98 IV.5.2 Alkyl-ammonium treated MMT (AMMT) ........................................109 IV.5.3 Grafting Reaction Mechanism for the Synthesis of Silane-treated MMT and Quantitative Analysis for the Grafting Efficiency Based on the Peaks at 916 cm-1 (Al2OH) and 844 cm-1 (AlMgOH)................115 IV.6 The Takayanagi Models ...........................................................................121 IV.7 Glass Transition Temperature by Dynamical Mechanical Analysis (DMA) ..................................................................................................................123 IV.7.1 St/UP Binary System .........................................................................123 IV.7.2 St/VER Binary System ......................................................................137 IV.7.3 Comparison of St/UP and St/VER Binary Systems ..........................149 IV.7.4 St/UP/MMT Ternary System ............................................................154 vi IV.7.5 St/VER/E7-15 Ternary System .........................................................184 IV.7.6 Epoxy/DDM Binary System .............................................................190 IV.7.7 Epoxy/DDM/E7-15 Ternary System .................................................199 IV.7.8 Epoxy/DDS Binary System ...............................................................205 IV.8 Volume Shrinkage ....................................................................................215 IV.8.1 St/UP and St/VER Binary Systems ...................................................215 IV.8.2 St/UP(MA-PG)/Silane-treated MMT Ternary System ......................218 IV.8.3 St/UP(MA-PG)/AMMT Ternary System ..........................................221 IV.8.4 St/VER/E7-15 Ternary System .........................................................225 IV.8.5 Epoxy/DDM/E7-15 Ternary System .................................................230 IV.9 Thermogravimetric Analysis (TGA) ........................................................235 IV.10 WAXS Measurement .............................................................................238 CHAPTER V…………………………………………………………………... 252 REFERENCES…………………………………………………………………....254

    1. R. Burns, Polyester Molding Compounds, Marcel Dekker, New York, 1982.
    2. Y. S. Yang and L. J. Lee, Polymer, 29, 1793 (1988).
    3. Y. S. Yang and L. J. Lee, Polym. Process. Eng., 5, 327 (1987).
    4. Y. J. Huang and J. S. Leu, Polymer, 34, 295 (1993).
    5. F. A. Cassis and R. C. Talbot, in Handbook of Composites, S. T. Peters, Ed., 2nd ed, Chapman & Hall, Tonbridge, 1998.
    6. R. P. Brill and G. R. Palmese, J. Appl. Polym. Sci. 76, 1572 (2000).
    7. J. P. Pascault, Ed., in Thermosetting Polymers, Marcel Dekker, New York, 2002, p. 389.
    8. L. S. Penn and H. Wang, in Handbook of Composites, S. T. Peters, Ed. Chapman and Hall, Tonbridge, 1998.
    9. E. J. Bartkus and C. H. Kroekel, Appl. Polym. Symp. 15, 113 (1970).
    10. R. E. Young, in Unsaturated Polyester Technology, P. F. Bruins, Ed. Gordon and Breach Science Publishers, New York, 1976.
    11. K. E. Atkins, in Sheet Moulding Compounds : Science and Technology, H. G. Kia, Ed., Hanser Publisher, New York, 1993.
    12. A. Al-Khanbashi, M. El-Gamal, and A.Moet, J. Appl. Polym. Sci. 98, 767 (2005).
    13. L. Xu and L. J. Lee, Polym. Eng. Sci, 45, 496 (2005).
    255
    14. X. Kornmann, L. A. Berglund, J. Sterte, and E. P. Giannelis, Polym. Eng. Sci. 38, 1351 (1998).
    15. S. S. Schwartz and S. H. Goodman, Plastic Materials and Processes, Van Nostrand Reinhold Company, New York, 1982, pp. 329-331,710.
    16. Crc for Polymers Pty., Ltd PCT Int. Appl. WO97/43339. (1997).
    17. S. Ziagee and G. R. Palmese, J. Appl. Polym. Sci. Part B 37, 725 (1999).
    18. X. Cao and L. J. Lee, J. Appl. Polym. Sci. 90, 1486 (2003).
    19. P. Li, X. P. Yang, Y. H. Yu, and D. S. Yu, J. Appl. Polym. Sci. 92, 1124 (2004).
    20. J. Y. Shieh and C. S. Wang, J. Appl. Polym. Sci. 78, 1636 (2000).
    21. M. Iji and Y. Kuichi, Polymers for Advance Technologies 12, 393 (2001).
    22. C. S. Wang and C. H. Lin, J. Appl. Polym. Sci. 75, 429 (2000).
    23. J. Cheng, J. Li, and J. Y. Zhang, eXPRESS Polym. Letters 3, 501 (2009).
    24. L. Schechter, J. Wynstra, and R. P. Kurkjy, Ind. Eng. Chem. 48, 94 (1956).
    25. B. A. Rozenberg, Adv. Polym. Sci. 75, 113 (1985).
    26. K. C. Cheng, K. C. Lia, and W. Y. Chiu, J. Appl. Polym. Sci. 71, 721 (1998).
    27. H. Liu, A. Uhlherr, R. J. Varley, and M. K. Bannister, J. Polym. Sci. Part A : Polym. Chem. 42, 3143 (2004).
    28. K. Horrie, I. Mita, and H. Kambe, J. Polym. Sci. Part A-1 : Polym. Chem. 7, 2561 (1969).
    29. M. R. Kamal, S. Slurour, and M. Ryan, SPE ANTEC Paper 19, 187 (1973).
    256
    30. S. Y. Pusatcioglu, A. L. Fricke, and J. C. Hasseler, J. Appl. Polym. Sci. 24, 937 (1979).
    31. C. D. Han and K. W. Lem, J. Appl. Polym. Sci. 28, 749 (1983).
    32. J. F. Stevenson, SPE ANTEC Paper 26, 452 (1980).
    33. J. F. Stevenson, Polym. Eng. Sci 26, 746 (1989).
    34. L. J. Lee, Polym. Eng. Sci 21, 483 (1981).
    35. Y. J. Huang and L. J. Lee, AIChE J. 31, 1585 (1985).
    36. C. D. Han and D. S. Lee, J. Appl. Polym. Sci. 37, 2859 (1987).
    37. C. S. Chern and D. C. Sunberg, ACS Polym. Prep. 26(1), 1296 (1985).
    38. G. L. Batch and C. W. Mocosko, SPE ANTEC Paper, 974 (1987).
    39. Y. J. Huang and J. D. Fan, L. J. Lee, Polym. Eng. Sci 30, 684 (1990).
    40. Y. J. Huang and C. C. Su, Polymer 35, 2397 (1994).
    41. Y. J. Huang, T. J. Lu, and W. Hwu, Polym. Eng. Sci 33, 1 (1993).
    42. Y. J. Huang and C. J. Chen, J. Appl. Polym. Sci. 47, 1533 (1993).
    43. Y. J. Huang and C. C. Su, J. Appl. Polym. Sci. 55, 305 (1995).
    44. V. A. Pattison, R. R. Hindersinn, and W. T. Schwartz, J. Appl. Polym. Sci. 18, 2736 (1974).
    45. V. A. Pattison, R. R. Hindersinn, and W. T. Schwartz, J. Appl. Polym. Sci. 18, 3045 (1974).
    46. Y. J. Huang and C. M. Liang, Polymer 37, 401 (1996).
    257
    47. Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym. Sci. 89, 3336 (2003).
    48. J. P. Dong, J. G. Huang, F. H. Lee, J. W. Roan, and Y. J. Huang, J. Appl. Polym. Sci. 91, 3336 (2004).
    49. S. B. Pandit and V. M. Nadkani, Ind. Eng. Chem. Res. 33, 2778 (1994).
    50. D.S.Kim, K. Cho, J. H. An, and C. E. Park, J. Mater. Sci. 29, 1854 (1994).
    51. J. S. Ullett and R. P. Chartoff, Polym. Eng. Sci 35, 1086 (1995).
    52. M. Abbate, E. Martuscelli, P.Musto, G. Ragosta, and G. Scarinzi, J. Appl. Polym. Sci. 58, 1825 (1995).
    53. M. L. L. Maspochand and A. B. Martinez, Polym. Eng. Sci 38, 290 (1998).
    54. N. A. Miller and C. D. Stirling, Polym. Comps. 9, 31 (2001).
    55. The. B. F. Goodrich. Co., WO 93/31374 (Oct.28,1993).
    56. K. F. Lin and Y. D. Shieh, J. Appl. Polym. Sci. 69, 2069 (1998).
    57. K. F. Lin and Y. D. Shieh, J. Appl. Polym. Sci. 70, 2313 (1998).
    58. P. Hazot, C. Pichot, and A. Maazouz, Macromol. Chem. Phys. 201, 632 (2000).
    59. B. J. P. Jansen, S. Rastogi, H. E. H. Meijer, and P. J. Lemstra, Macromolecules 34, 3998 (2001).
    60. H. J. Sue, E. I. Garciameitin, and D. M. Picklman, in Polymer Toughening, C. B. Arends, Marcel Dekker, New York, 1996.
    61. The Dow Chemical. Company, US Patent, 4,778,851 ( Oct.18,1988).
    258
    62. J. Y. Qian, R. A. Pearson, V. L. Dimonie, and M.S.El-Aasser, J. Appl. Polym. Sci. 58, 439 (1995).
    63. T. N. Li, L. S. Turng, S. Q. Gong, and K. Erlacher, Polym. Eng. Sci 46, 1419 (2006).
    64. W. E. Worrall, Clays and Ceramics Raw Materials. Elsevier, London, ed. 2nd, 1986.
    65. Y. J. Huang, S. C. Lee, and J. P. Dong, J. Appl. Polym. Sci. 78, 558 (2000).
    66. Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym. Sci. 89, 3347 (2003).
    67. Y. J. Huang and J. C. Horng, Polymer 39, 3683 (1998).
    68. M. Takayanagi, K. Emada, and T. Kajiyama, J. Appl. Polym. Sci. Part C 15, 263 (1966).
    69. J. Odian, in Principles of Polymerization. (Wiley, New York, 2004), pp. 313-330.
    70. T. P. Le, G. Moad, E. Rizzardo, and S. H. Thang, in PCT Int. Appl WO9801478 A1 980115. (1998).
    71. J. Chiefare, Y.K. (Bill) Chong, F. Ercole, J. Krstina, J. Jeffery, T.P. Le;, R.T.A. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad, E. Rizzardo, and S.H. Thang, Macromolecules 31, 5559 (1998).
    72. Y. Zhao and S. Perrier, Macromolecules 39, 8603 (2006).
    73. Y. Zhao and S. Perrier, Macromolecules 40, 9116 (2007).
    74. G. Moad, F. Ercole, C.H. Johnson, J. Krstina, C.L. Moad, E.Rizzardo, T.H. Spurling, S.H. Thang, and A. Anderson, ACS Symp. Ser. 685, 332 (1997).
    259
    75. M. S. Day, M.S Thesis, National Taiwan University of Science and Technology (2010).
    76. Y. J. Huang and W. C. Chiang, Polymer 39, 631 (1998).
    77. S. Freal-Saison, M. Save, C. Bui, B. Charleux, and S. Magnet, Macromolecules 39, 8632 (2006).
    78. J.C. Lin, M.S Thesis, National Taiwan University of Science and Technology (2010).
    79. A. Yosephine, M.S Thesis, National Taiwan University of Science and Technology (2007).
    80. T.J. Guo, M.S Thesis, National Taiwan University of Science and Technology (2006).
    81. S. K. Chung, J. J. Wie, B. Y. Park, and S. C. Kim, J. Macromolecule Science, Part A : Pure and Applied Chemistry 46, 205 (2009).
    82. Y. S. Yang and L. J. Lee, Macromolecules 20, 1490 (1987).
    83. D. W. Krevelen, in Properties in Polymers, Elsevier, London, 1990, pp. 198, 323.
    84. T. Y. Hsu, M.S Thesis, National Taiwan University of Science and Technology (2009).
    85. H. L. Chen, M.S Thesis, National Taiwan University of Science and Technology (2010).
    86. B. Stuart, Infrared Spectroscopy : Fundamental and Applications. Wiley, New York, 2004.
    87. J. Madejova, Vibrational Spectroscopy 31, 1 (2003).
    260
    88. H. Stutz, K. H. Illers, and J. Mertres, J. Appl. Polym. Sci. Part B : Polym. Phys. 28, 1483 (1990).
    89. T. L. Yu, Polym. J. 28, 965 (1996).
    90. S. Sen, Polymer Composites 31, 482 (2010).
    91. R. J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science. Oxford University Press, New York, 2000.

    QR CODE