簡易檢索 / 詳目顯示

研究生: 鄭智仁
Zhi-Ren Zheng
論文名稱: 不同類型的滑動行為對添加劑磨潤性能的影響
Effect of different types of sliding on the Tribological performance of additives
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 周育任
Yu-Jen Chou
郭俊良
Chun-liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 236
中文關鍵詞: 磨潤性能四球磨耗往復式磨耗磷系添加劑ZDDP添加劑
外文關鍵詞: Tribological performance, Four-ball wear, Reciprocating wear, Phosphorus additives, ZDDP additives
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於探討不同滑動行為對於兩種潤滑劑添加劑磨潤性能的影響,分別為磷系極壓添加劑與ZDDP抗磨耗添加劑,使用不同濃度加入至MN基礎油,在不同油溫以迴轉式與往復式之滑動模式進行磨耗試驗,利用磨疤直徑與磨耗軌跡寬度評估試驗用油之磨潤性能。另外,增長磨耗週期以驗證含添加劑混合油於長時間下是否有消耗現象。結果顯示,迴轉式磨耗試驗時,磷系添加劑能有效改善MN的耐極壓能力。ZDDP添加劑則於高溫條件效果較為顯著;但ZDDP添加劑在油溫較低時,因實驗溫度較低導致不易生成化合膜,無法有效保護表面。往復式磨耗試驗時,磷系添加劑混合油較有效改善MN的耐極壓能力。ZDDP添加劑混合油也能改善MN的耐極壓力,但濃度需達到3%以上才能有效保護效果。針對不同運動型態,迴轉式磨耗試驗由於滑動速度較高,造成攪拌效應相對較弱,容易形成飽和濃度層,使磨疤直徑變異不大;往復式磨耗試驗時,添加劑濃度都高於迴轉式磨耗試驗,才能有效降低磨耗量,原因為試片一秒鐘來會多次,攪拌效應較為強,不容易形成飽和濃度層,需仰賴整體濃度才能有較快的化合膜生長速率。其中,濃度達到臨界值以後,磨耗寬度趨於平穩,此即意味著表面存在有局部飽和濃度層。
    增長磨耗週期時,使用較低濃度添加劑混合油的試片磨耗量都有明顯增加;但隨著添加劑濃度的增加試片的磨耗量均有明顯下降,此結果說明磨耗試驗過程中添加劑在基礎油中會有消耗的現象。另外,磷系添加劑會因濃度不足導致均質度下降引發更嚴重的磨耗行為。


    The purpose of this study is to investigate the effect of different sliding behaviors on the grinding performance of two lubricant additives, namely phosphorus-based extreme pressure additive and ZDDP anti-wear additive. The wear test was carried out with the reciprocating sliding mode, and the wear performance of the test oil was evaluated by the diameter of the wear scar and the width of the wear track. In addition, increase the wear cycle to verify whether the additive-containing blend oil is worn out over a long period of time. The results show that in the rotary wear test, phosphorus-based additives can effectively improve the extreme pressure resistance of MN. The ZDDP additive is more effective at high temperature; however, when the oil temperature is low, the ZDDP additive is not easy to form a compound film due to the low experimental temperature, and cannot effectively protect the surface. In the reciprocating wear test, the phosphorus-based additive mixed oil can effectively improve the extreme pressure resistance of MN. ZDDP additive mixed oil can also improve the extreme pressure resistance of MN, but the concentration needs to be more than 3% to effectively protect the effect. According to different motion patterns, due to the high sliding speed of the rotary wear test, the stirring effect is relatively weak, and it is easy to form a saturated concentration layer, so that the variation in the diameter of the wear scar is not large; in the reciprocating wear test, the additive concentration is higher than that of the rotary wear test. Wear test can effectively reduce the amount of wear. The reason is that the test piece will be repeated several times in one second, and the stirring effect is relatively strong, and it is not easy to form a saturated concentration layer. Among them, after the concentration reaches the critical value, the wear width tends to be stable, which means that there is a local saturated concentration layer on the surface.
    When the wear cycle is increased, the wear amount of the test piece using the mixed oil with the lower concentration additive increases significantly; but with the increase of the additive concentration, the wear amount of the test piece decreases significantly. This result shows that the additive is in the base oil during the wear test process. There will be consumption. In addition, phosphorus-based additives may cause more serious wear behavior due to a decrease in homogeneity due to insufficient concentration.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1研究動機 1 1.2模型設計簡介 3 第二章 文獻回顧 4 2.1潤滑模式與邊界潤滑膜 4 2.1.1潤滑模式 4 2.1.2潤滑狀態的邊界膜型態 6 2.2磨耗機制 9 2.3基礎油種類 11 2.4添加劑種類 12 2.5抗磨耗添加劑相關研究 14 2.6極壓添加劑相關研究 16 2.7接觸行為 19 2.8閃火溫度與摩擦表面接觸溫度 23 2.9溫度及濃度對化合膜生成速率的影響 26 第三章 實驗設備與分法 30 3.1實驗設備 30 3.1.1 TE92磨耗試驗機 30 3.1.2 TE77磨耗試驗機 32 3.2分析儀器 34 3.3試片規格 40 3.3.1 TE92磨耗試驗之試片 40 3.3.2 TE77磨耗試驗之試片 41 3.4試驗用油與添加劑 42 3.4.1基礎油 42 3.4.2添加劑 43 3.5磨耗實驗 45 3.6實驗步驟 47 3.6.1實驗前準備 47 3.6.2磨耗實驗步驟 48 3.6.3分析步驟 49 第四章 結果與討論 52 4.1迴轉滑動狀態下添加劑濃度及油溫對於磨潤行為的影響 52 4.1.1 TE92各類試球的磨耗情形 52 4.1.2試球在基礎油中進行磨耗試驗的磨潤行為分析 64 4.1.3不同濃度及油溫對含磷系添加劑混合油磨潤行為之影響 73 4.1.4不同濃度及油溫對含ZDDP添加劑混合油磨潤行為之影響 103 4.2往復滑動狀態下添加劑濃度及溫度對於磨潤行為的影響 134 4.2.1基礎油之磨潤行為影響 137 4.2.2濃度及溫度對含磷系添加劑混合油磨潤行為之影響 141 4.2.3不同濃度及溫度對含ZDDP添加劑混合油磨潤行為之影響 162 4.3高溫往復滑動狀態下不同濃度添加劑的長週期磨潤行為 194 4.3.1基礎油之磨潤行為 204 4.3.2不同濃度對含磷系添加劑混合油磨潤行為 206 4.3.3不同濃度對含ZDDP添加劑混合油磨潤行為 210 4.4不同運動型態對於含添加劑混合油磨潤行為之影響 214 第五章 結論 215 5.1結論 215 參考文獻 217

    [1] J. Sotres, T. Arnebrant, “Experimental Investigations of Biological Lubrication at the Nanoscale: The Cases of Synovial Joints and the Oral Cavity”, Lubricants,pp. 102-131 , 2013.
    [2] 林榮盛, “潤滑學” ,全華科技圖書股份有限公司,1987年。
    [3] 溫詩鑄、黃平,“摩擦學原理”,清華大學出版社,2002年。
    [4] 徐濱士,“神奇的表面工程”,清華大學出版社,2000年。
    [5] A. Sethuramiah, Rajesh Kumar, “Modeling of Chemical Wear: Relevance to Practive”, Elsevier, 2016.
    [6] A.K. Tripathi, A. Bhattacharya, R. Singh, V.K. Verma, “Tribological studies of 1-alkyl-2,5-dithiohydrazodicarbonamides and their Mo–S complexes as EP and multifunctional additives”, Tribology International, Vol. 33, pp. 13-20, 2000.
    [7] B. Podgornik and J. Vižintin, “Tribological reactions between oil additives and DLC coatings for automotive applications”, Surface and Coatings Technology, Vol. 200, no. 5-6, pp. 1982-7989, 2005.
    [8] O. Gorbatchev, M. I. DeBarrosBouchet , J. M. Martin, D. Léonard,“Friction reduction efficiency of organic Mo-containing FM additives associated to ZDDP for steel and carbon-based contacts”, Tribology International, Vol. 99, pp. 278-288, 2016.
    [9] Wear; Terms, Systematic Analysis of Wear Processes, Classification of Wear Phenomena, 1979.
    [10] G. Straffelini, “Friction and Wear”, Springer International Publishing, Switzerland. doi, Vol. 10, pp. 978-3, 2015.
    [11] K.-H. Zum Gahr, Microstructure and wear of materials. Elsevier, 1987.
    [12] G. Stachowiak and A. W. Batchelor, Engineering tribology. Butterworth-Heinemann, 2013.
    [13] 李冠宗,“潤滑學”,高立圖書有限公司,1988年。
    [14] 張景河,“現代潤滑油與燃料添加劑”,中國石化出版社,1992年。
    [15] 林原慶,“ZDDP添加劑在邊界潤滑狀態下的抗磨耗研究”,博士論文,國立台灣大學,1993年。
    [16] A. Molina, “Isolation and chemical characterization of a zinc dialkyldithiophosphate-derived antiwear agent”, ASLE transactions, Vol. 30, no. 4, pp. 479-485, 1986.
    [17] J. Martin, M. Belin, J. Mansot, H. Dexpert, and P. Lagarde, “Friction-induced amporphization with ZDDP⸺an EXAFS study”, ASLE transactions, Vol. 29, no. 4, pp. 523-531, 1986.
    [18] S. Gunsel, “In-Situ Measurement of ZDDP films in Concentrated Contacts” , Tribology Transactions, Vol. 36, pp.276-286, 1993.
    [19] 陳又嘉,“添加劑對於不同基礎油與不同材料之磨潤性能的影響”,碩士論文,國立台灣科技大學,2018年。
    [20] A. Bhattacharya, T. Singh, and V. Verma, “EP activity evaluation of cyclic disulphides using ball bearings of different compositions”, Tribology International, Vol. 23, no. 5, pp. 361-365, 1990.
    [21] A.A. Torrance, J.E. Morgan, G.T.Y. Wan, “An additive’s influence on the pitting and wear of ball bearing steel”, Wear, Vol. 192, pp.66-73, 1996.
    [22] G.T.Y. Wan, Z.V. Amerongen and H. Lankamp, “Effect of extreme pressure additive on fatigue life of rolling bearing”, J. Phys. D. Appl. Phys., Vol. 25, pp. 147-153, 1992.
    [23] Y.-C. Lin, Y.-H. Cho, and C.-T. Chiu, “Tribological Performance of EP Additives in Different Base Oils”, Tribology Transactions, Vol. 55, no. 2, pp. 175-184, 2012.
    [24] G. M. Hamilton, “Explicit equations for the stresses beneath a sliding spherical contact”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Enginering Science, Vol. 197, no. 1, pp. 53-59, 1983.
    [25] J. F. Archard, “The Temperature of Rubbing Surface”, Wear, Vol. 2, pp. 438-455, 1959.
    [26] 邱錦德,“極壓添加劑對於不同基礎油中之磨潤行為”,碩士論文,國立台灣科技大學,2004年。
    [27] 鄧禮堂,“化學反應工程”,高立圖書有限公司,1985年。
    [28] S.Ašperger, “Chemical Kinetics and Inorganic Reaction Mechanisms”, Springer Science+Business Media New York 2003.
    [29] 郭羿成,“不同添加劑對PAG冷凍潤滑油於R134a冷媒環境下磨潤性能之研究”,碩士論文,國立台灣科技大學,2019年。
    [30] 國立清華大學貴重儀器中心。(網址:http://www.nscric.nthu.edu.tw/p/404-1186-122513.php?Lang=zh-tw )
    [31] 台灣中油股份有限公司潤滑油事業部。(網址:https://www.cpc.com.tw/division/lb/ )
    [32] I. Colonial Chemical. (網址:http://www.colnialchem.com/ )
    [33] I. Chemicals. (網址:http://lubeperformanceadditives.com/ )
    [34] C.N.-.-. Polyerhylene Glycol Monooleyl Ether Phosphate. (網址:https://www.chemblink.com/products/39464-69-2.htm )
    [35] John F.Moulder, “Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics Division,Perkin-Elmer Corporation, 1992.
    [36] 美國標準技術局網站。 (網址:http://srdata.nist.gov/xps/selEnergyType.aspx )
    [37] ThermoFisher SCIENTIFIC. (網址:
    https://www.thermofisher.com/tw/zt/home/materials-science/learning-center/periodic-table/non-metal/carbon.html )
    [38] Jiaren Jiang*†,F.H.Stott and M.M.Stack “The role of triboparticulates in dry sliding wear”, Tribology International, Vol. 31, No. 5, pp. 245-256, 1998.
    [39] M.M. De Oliveira Junior, H.L. Costa1, W.M. Silva Junior, J.D.B. De Mello “Effect of iron oxide debris on the reciprocating sliding wear of tool steels”, Wear, Vol. 426-427, pp. 1065-1075, 2019.

    無法下載圖示 全文公開日期 2024/01/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2024/01/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE