簡易檢索 / 詳目顯示

研究生: 唐俊傑
Chun-Chieh Tang
論文名稱: 雷射鏟花之油袋幾何特徵 於缺油潤滑中對磨潤性能之影響
The Effects of the geometric characteristics of the oil pockets scraped by laser under starved lubrication on the tribological performance
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Su-Hai Hsiang
張復瑜
Fuh-Yu Chang
呂道揆
Daw-Kwei Leu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 119
中文關鍵詞: 雷射鏟花表面紋理微液動壓效應物理楔面油袋磨潤性能
外文關鍵詞: Laser scraped, Surface textured,
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的在於探討雷射鏟花油袋幾何特徵在缺油潤滑中對硬軌磨潤性能之影響,以奈秒雷射於低碳鋼試片表面加工不同幾何特徵的油袋,並使用迴轉式磨耗試驗機,將低碳鋼試片與黃銅試片,在滑動速度(0.42 m/s)、外視壓力(5.21MPa)、面接觸和缺油潤滑(0.3 ml)的條件下進行磨擦試驗,模擬硬軌運動情形,並透過掃描電子式顯微鏡、能量散步光譜儀等分析儀器觀察其磨耗機制,藉此評估不同油袋幾何特徵對於硬軌磨潤性能之影響。
    研究結果顯示當表面皆具有油袋時,在滑動過程中,滑動面會因物理吸附效應,而將油袋中之潤滑油帶入摩擦區,以減緩失油潤滑的現象,使整個滑動過程中,兩接觸表面保有一定的潤滑液,維持平穩的摩擦係數。
    其中當油袋出口端深度h1為0μm、油袋底部傾角為0.16°時,物理楔面之漸縮區指向滑動方向時,能產生明顯微液動壓之效應,進而降低摩擦係數,提升磨潤性能。


    This study aims to investigate the effect of the geometric characteristics of the oil pockets scraped by laser under starved lubrication on the tribological performance. The different surface patterns on the low carbon steel were fabricated by nano-second pulsed laser. The frictional test were conducted using a rotating type tribometer. The friction behaviors were investigated by against copper under starved lubrication condition with nominal contact pressure of 5.21MPa and sliding speed of 0.42 m/s. The machine tool slideway oil (SHELL Tonna S2 M 32) was used as lubricant.
    The experiment results showed that the sliding surface will bring the lubricant from the oil pocket into the friction zone by the physical adsorption effect, resulting in maintaining a stable friction performance.
    The experiment results indicated that the surface pattern with physical wedge (the outlet depth of 0 μm and the inclination angle of the bottom of 0.16° ) could enhance micro hydrodynamic effect during sliding contact, resulting in decreased the friction coefficient.

    摘要 II Abstract II 目錄 III 表目錄 VI 圖目錄 VII 第一章 前言 1 1-1 研究背景 1 1-2 研究動機與目的 2 第二章 文獻回顧 3 2-1 潤滑模式分類 3 2-1-1 邊界潤滑 (Boundary lubrication) 5 2-1-2 混合潤滑 (Mixed lubrication) 6 2-1-3 全膜潤滑 (Fluid film lubrication) 7 2-2 磨耗機構分類 8 2-2-1 刮磨磨耗 (Abrasive wear) 9 2-2-2 黏著磨耗 (Adhesive wear) 12 2-2-3 磨潤化學磨耗 (Tribochemical wear) 13 2-2-4 表面疲勞磨耗 (Surface fatigue wear) 14 2-3 液動壓效應之研究 15 2-4 微液動壓效應之研究 25 2-5 傳統鏟花於磨潤性能之研究 33 2-6 雷射鏟花於磨潤性能之研究 36 第三章 實驗方法及步驟 42 3-1 實驗設備 42 3-1-1 脈衝奈秒雷射加工機 42 3-1-2 迴轉式磨耗試驗機 43 3-2 分析設備 46 3-2-1 綠光干涉儀 46 3-2-2 光學顯微鏡 47 3-2-3 掃描電子式顯微鏡 48 3-3 試片製備 49 3-3-1 上試片製備(滑動試片) 49 3-3-2 下試片製備(固定試片) 52 3-3-3 治具製備 55 3-4 摩擦試驗 58 3-4-1 摩擦試驗程序 58 3-4-2 摩試驗參數設定 60 3-4-3 摩擦係數校正 62 第四章 結果與討論 64 4-1 雷射單向掃描次數與材料移除深度的關係 65 4-2 雷射鏟花油袋設計與檢測 72 4-3 未鏟花表面之磨潤行為分析 89 4-3-1 摩擦行為分析 89 4-3-2 磨耗型態分析 90 4-4 油袋底部傾角θ對於摩擦行為的影響 92 4-4-1 油袋出口端深度h1為30μm 93 4-4-2 油袋出口端深度h1為0μm 96 4-5 物理楔面之漸縮方向對於磨潤行為的影響 101 4-5-1 摩擦行為分析 101 4-5-2 磨耗型態分析 104 4-6 油袋出口端深度h1對於摩擦行為的影響 109 4-7 油袋圓周d1和半徑方向間距d2對於摩擦行為的影響 112 第五章 結論與未來展望 114 5-1 結論 114 5-2 未來展望 116 參考文獻 117

    [1] 簡煜倫, "雷射咬花技術應用於鏟花件之磨潤特性研究," 碩士, 機械工程學研究所, 國立臺灣大學, 台北市, 2017.
    [2] J. Sotres and T. Arnebrant, "Experimental investigations of biological lubrication at the nanoscale: the cases of synovial joints and the oral cavity," Lubricants, vol. 1, no. 4, pp. 102-131, 2013.
    [3] M. J. Neale, The tribology handbook. Elsevier, 1995.
    [4] Wear; Terms, Systematic Analysis of Wear Processes, Classification of Wear Phenomena, 1979.
    [5] K.-H. Zum Gahr, Microstructure and wear of materials. Elsevier, 1987.
    [6] G. Stachowiak and A. W. Batchelor, Engineering tribology. Butterworth-Heinemann, 2013.
    [7] B. J. Hamrock, S. R. Schmid, and B. O. Jacobson, Fundamentals of fluid film lubrication. CRC press, 2004.
    [8] M. Fowell, A. Olver, A. Gosman, H. Spikes, and I. Pegg, "Entrainment and inlet suction: two mechanisms of hydrodynamic lubrication in textured bearings," Journal of Tribology, vol. 129, no. 2, pp. 336-347, 2007.
    [9] S. Cupillard, S. Glavatskih, and M. J. Cervantes, "3D thermohydrodynamic analysis of a textured slider," Tribology International, vol. 42, no. 10, pp. 1487-1495, 2009.
    [10] S. Cupillard, "Thermohydrodynamics of sliding contacts with textured surfaces," Luleå tekniska universitet, 2009.
    [11] S. Cupillard, M. J. Cervantes, and S. Glavatskih, "Pressure buildup mechanism in a textured inlet of a hydrodynamic contact," Journal of Tribology, vol. 130, no. 2, p. 021701, 2008.
    [12] S. Cupillard, S. Glavatskih, and M. Cervantes, "Inertia effects in textured hydrodynamic contacts," Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 224, no. 8, pp. 751-756, 2010.
    [13] P. Shankar and M. Deshpande, "Fluid mechanics in the driven cavity," Annual review of fluid mechanics, vol. 32, no. 1, pp. 93-136, 2000.

    [14] T. Nanbu, N. Ren, Y. Yasuda, D. Zhu, and Q. J. Wang, "Micro-textures in concentrated conformal-contact lubrication: effects of texture bottom shape and surface relative motion," Tribology Letters, vol. 29, no. 3, pp. 241-252, 2008.
    [15] H. Ogawa, S. Sasaki, A. Korenaga, K. Miyake, M. Nakano, and T. Murakami, "Effects of surface texture size on the tribological properties of slideways," Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 224, no. 9, pp. 885-890, 2010.
    [16] H. Yukeng, C. Darong, and Z. Linqing, "Effect of surface topography of scraped machine tool guideways on their tribological behaviour," Tribology international, vol. 18, no. 2, pp. 125-129, 1985.
    [17] H. Costa and I. M. Hutchings, "Some innovative surface texturing techniques for tribological purposes," Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 229, no. 4, pp. 429-448, 2015.
    [18] J. C. Puoza, X. Hua, P. Zhang, X. Xie, J. Ji, and Y. Fu, "Laser processing parameter optimization and tribological characteristics of different surface treatment," The International Journal of Advanced Manufacturing Technology, vol. 92, no. 9-12, pp. 3919-3930, 2017.
    [19] K. Li, Z. Yao, Y. Hu, and W. Gu, "Friction and wear performance of laser peen textured surface under starved lubrication," Tribology international, vol. 77, pp. 97-105, 2014.
    [20] A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, "The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact," Tribology International, vol. 38, no. 3, pp. 219-225, 2005.
    [21] D. Braun, C. Greiner, J. Schneider, and P. Gumbsch, "Efficiency of laser surface texturing in the reduction of friction under mixed lubrication," Tribology international, vol. 77, pp. 142-147, 2014.
    [22] S.-C. Vladescu, A. V. Olver, I. G. Pegg, and T. Reddyhoff, "The effects of surface texture in reciprocating contacts–An experimental study," Tribology International, vol. 82, pp. 28-42, 2015.
    [23] H. Costa and I. Hutchings, "Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions," Tribology International, vol. 40, no. 8, pp. 1227-1238, 2007.

    無法下載圖示 全文公開日期 2025/01/17 (校內網路)
    全文公開日期 2025/01/17 (校外網路)
    全文公開日期 2025/01/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE