簡易檢索 / 詳目顯示

研究生: 蔣孟軒
Meng Hsuan Chiang
論文名稱: 水熱法合成摻氮石墨烯量子點應用於光感測器
Synthesis of Nitrogen-doped Graphene Quantum Dots for Photodetectors by Hydrothermal Method
指導教授: 周賢鎧
Shyankay Jou
口試委員: 胡毅
Yi Hu
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 115
中文關鍵詞: 水熱法石墨烯量子點光感測器
外文關鍵詞: Hydrothermal Method, Graphene Quantum Dots, GQDs, Photodetector
相關次數: 點閱:344下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用葡萄糖及尿素作為前驅物,透過水熱法合成石墨烯量子點(GQDs)與摻氮石墨烯量子點(N-GQDs),經由透析後GQDs與N-GQDs HRTEM圖之平面間距驗證此為石墨烯量子點,其平面間距分別為0.237 nm與0.242 nm,接近於石墨碳(11¯20)平面間距0.24 nm。利用簡易製備元件的網印法製作光感測器,並採用透析製程過濾雜質以優化光感測器之光響應度,GQDs從0.012 A/W提升至0.043 A/W,N-GQDs從0.034 A/W提升至0.056 A/W,此外本研究製備光感測器之響應時間皆在毫秒等級。


    In this study, glucose and urea were used as precursors to synthesize graphene quantum dots (GQDs) and nitrogen-doped graphene quantum dots (N-GQDs) by hydrothermal method. The GQDs and N-GQDs was verified by their plane spacing from the HRTEM images after dialysis. The plane spacing of 0.237 nm for GQDs and 0.242 nm for N-GQDs are close to the graphite carbon (11¯20) plane spacing of 0.24 nm. Metal-semiconductor-metal(MSM) photodetectors were prepared using screen printing and drop casting methods. Dialysis process was used to filter impurities in GQDs and N-GQDs to optimize the photodetector’s performane. The responsivity for GQDs is increased from 0.012 A/W to 0.043 A/W, N-GQDs is increased from 0.034 A/W to 0.056 A/W. In addition, the response time of the photodetector prepared in this study is in the millisecond level.

    目錄 摘要 1 Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1奈米材料 4 2.2量子點(Quantum Dots)介紹 6 2.3碳點(CDs)與石墨烯量子點(GQDs) 7 2.3.1碳點與石墨烯量子點及摻氮石墨烯量子點性質 8 2.3.2碳點與石墨烯量子點製備方法 25 2.3.3碳點與石墨烯量子點應用 30 第三章 研究方法與實驗步驟 39 3.1實驗藥品及耗材 39 3.2實驗設備及分析儀器 40 3.3 實驗步驟 41 3.3.1水熱法製備GQDs與N-GQDs 42 3.3.2 GQDs與N-GQDs過濾與純化 43 3.3.3 GQDs與N-GQDs結構分析 45 3.3.4 GQDs與N-GQDs MSM元件製備 47 3.3.5 GQDs與N-GQDs MSM元件量測 49 第四章 結果與討論 51 4.1石墨烯量子點與摻氮石墨烯量子點合成分析 51 4.1.1 未透析GQDs與N-GQDs螢光性質優化 51 4.1.2 未透析GQDs與N-GQDs螢光量子產率分析 53 4.1.3 未透析GQDs與N-GQDs FTIR分析 56 4.2 石墨烯量子點與摻氮石墨烯量子點結構探討 57 4.2.1 透析GQDs與N-GQDs之HRTEM結果分析 58 4.2.2 透析GQDs與N-GQDs之FTIR結果分析 60 4.2.3 透析GQDs與N-GQDs之UV-VIS結果分析 61 4.2.4 透析GQDs與N-GQDs之PL結果分析 63 4.3 石墨烯量子點與摻氮石墨烯量子點之光感測元件量測探討 65 4.3.1光感測元件之光電導效應分析 66 4.3.2光感測元件之光熱電效應分析 84 第五章 結論 86 附錄 102

    參考文獻
    [1] 馬振基, 奈米材料科技原理與應用 第三版, 全華圖書股份有限公司 (2017) 1-3.
    [2] Anonymous, Nanocrystals in their prime, Nature Nanotechnol ogy 9(5) (2014) 325.
    [3] A.I. Ekimov, A.L. Efros, A.A. Onushchenko, Quantum size effect in semiconductor microcrystals(The paper of first discovery QD), Solid State Communications 56 (1985) 921-924.
    [4] L.E. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, The Journal of Chemical Physics 79 (1983) 5566.
    [5] L.E. Brus, Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, The Journal of Chemical Physics 80(9) (1984) 4403-4409.
    [6] 楊智惠、黃耿迷、王英基、林裕城, 量子點-奈米彩虹標籤, 科學發展, 422 (2008) 46-49.
    [7] D.J.N. C. B. Murray, and M. G. Bawendi', Synthesis and Characterization of Nearly Monodisperse CdE(E = sulfur, selenium, tellurium) ,, American Chemical Society 115(19) (1993) 8706-8715.
    [8] A.E. A. Mews, M. Giersig, D. Schooss, and H. Weller, Preparation, Characterization, and Photophysics of the Quantum Dot Quantum Well System, American Chemical Society 98 (1994) 934-941.
    [9] P.G.-S. Margaret A. Hines, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals, American Chemical Society 100 (1996) 468-471.
    [10] X.P. Z. Adam Peng Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor, American Chemical Society 123 (2001) 183-184.
    [11] L.A.P. Wan Ki Bae, Young-Shin Park, Hunter McDaniel, Istvan Robel, Jeffrey M. Pietryga, , V.I. Klimov, Controlled Alloying of the Core-Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination, ACS Nano 7 (2013) 3411-3419.
    [12] H. Liang, D. Song, J. Gong, Signal-on electrochemiluminescence of biofunctional CdTe quantum dots for biosensing of organophosphate pesticides, Biosens Bioelectron 53 (2014) 363-9.
    [13] J.G. Jianbing Zhang, Elisa M. Miller,Joseph M. Luther, and Matthew C. Beard, Diffusion-Controlled Synthesis of PbS, ACS Nano 8 (2014) 614-622.
    [14] A. Gamouras, M. Britton, M.M. Khairy, R. Mathew, D. Dalacu, P. Poole, D. Poitras, R.L. Williams, K.C. Hall, Energy-selective optical excitation and detection in InAs/InP quantum dot ensembles using a one-dimensional optical microcavity, Applied Physics Letters 103(25) (2013).
    [15] L. Pang, H. Cui, Y. Liu, W. Zhong, Anti-VEGF antibody conjugated CdHgTe quantum dots as a fluorescent probe for imaging in living mouse, Journal of Luminescence 173 (2016) 274-278.
    [16] 梁凱玲、蘇育央、呂奇明, 量子點粒子材料合成與應用介紹, 工業材料雜誌 353 (2016).
    [17] A.K. Geim, K.S. Novoselov, The Rise of Graphene, Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific,2010, pp. 11-19.
    [18] R.R. Xiaoyou Xu, Yunlong Gu, Harry J. Ploehn, Latha Gearheart, Kyle Raker, Walter A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, American Chemical Society 126(40) (2004) 12736-12737.
    [19] P. Tian, L. Tang, K.S. Teng, S.P. Lau, Graphene quantum dots from chemistry to applications, Materials Today Chemistry 10 (2018) 221-258.
    [20] 陳學仕, 量子點之產業應用與未來發展, 工研院產業應用專刊 (2004) 1-13.
    [21] 林敬哲, 熱蒸鍍法沉積奈米氧化鋅之光感測特性, 國立台灣科技大學 (2016) 11.
    [22] 賴炤銘、李錫隆, 奈米材料的特殊效應與應用, The Chinese Chemistry Socity TAIPEI ) 61 (2003,) pp.585~597.
    [23] 陳文章、徐俊旭、呂博文、李坤易、林志鴻, 功能性奈米材料及其應用, 真空科技 十九卷一期 (2006) 4-16.
    [24] M.A. Kasfner, Artificial atom, Physics Today (1993) 24-31.
    [25] 林銘杰, 開放式量子異質結構之準穩態研究, 國立交通大學博士論文 (2002).
    [26] M. Li, T. Chen, J.J. Gooding, J. Liu, Review of Carbon and Graphene Quantum Dots for Sensing, ACS Sensors 4(7) (2019) 1732-1748.
    [27] S. Paulo, E. Palomares, E. Martinez-Ferrero, Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications, Nanomaterials (Basel) 6(9) (2016) 157.
    [28] X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications, Small 11(14) (2015) 1620-36.
    [29] F.A. Permatasari, A.H. Aimon, F. Iskandar, T. Ogi, K.J.S.r. Okuyama, Role of C–N configurations in the photoluminescence of graphene quantum dots synthesized by a hydrothermal route, 6 (2016) 21042.
    [30] T. Shen, Q. Wang, Z. Guo, J. Kuang, W. Cao, Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity, Ceramics International 44(10) (2018) 11828-11834.
    [31] D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots, Scientific Reports 4(1) (2014) 1-11.
    [32] B. Zheng, Y. Chen, P. Li, Z. Wang, B. Cao, F. Qi, J. Liu, Z. Qiu, W. Zhang, Ultrafast ammonia-driven, microwave-assisted synthesis of nitrogen-doped graphene quantum dots and their optical properties, Nanophotonics, 6(1) (2017) 259.
    [33] A. Bayat, E. Saievar-Iranizad, Synthesis of green-hotoluminescent single layer graphene quantum dots: Determination of HOMO and LUMO energy states, Journal of Luminescence 192 (2017) 180-183.
    [34] V.A. Chhabra, R. Kaur, N. Kumar, A. Deep, C. Rajesh, K.-H. Kim, Synthesis and spectroscopic studies of functionalized graphene quantum dots with diverse fluorescence characteristics, RSC Advances 8(21) (2018) 11446-11454.
    [35] S. Ben Aoun, Nanostructured carbon electrode modified with N-doped graphene quantum dots–chitosan nanocomposite: a sensitive electrochemical dopamine sensor, Royal Society Open Science 4(11) (2017) 171199.
    [36] L. Tang, R. Ji, X. Li, G. Bai, C.P. Liu, J. Hao, J. Lin, H. Jiang, K.S. Teng, Z. Yang, Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots, ACS Nano 8(6) (2014) 6312-6320.
    [37] L. Tang, R. Ji, X. Li, K.S. Teng, S.P. Lau, Energy-level structure of nitrogen-doped graphene quantum dots, Journal of Materials Chemistry C 1(32) (2013) 4908-4915.
    [38] T. Yuan, T. Meng, P. He, Y. Shi, Y. Li, X. Li, L. Fan, S. Yang, Carbon quantum dots: an emerging material for optoelectronic applications, Journal of Materials Chemistry C 7 (2019) 6820-6835.
    [39] G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide, Advanced Materials 22(4) (2010) 505-509.
    [40] M.A. Sk, A. Ananthanarayanan, L. Huang, K.H. Lim, P. Chen, Revealing the tunable photoluminescence properties of graphene quantum dots, Journal of Materials Chemistry C 2(34) (2014) 6954-6960.
    [41] J. Shen, Y. Zhu, C. Chen, X. Yang, C. Li, Facile preparation and upconversion luminescence of graphene quantum dots, Chemical Communications 47(9) (2011) 2580-2582.
    [42] S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up‐conversion bioimaging applications, Advanced Functional Materials 22(22) (2012) 4732-4740.
    [43] C.T. Chien, S.S. Li, W.J. Lai, Y.C. Yeh, H.A. Chen, I.S. Chen, L.C. Chen, K.H. Chen, T. Nemoto, S. Isoda, Tunable photoluminescence from graphene oxide, Angewandte Chemie International Edition 51(27) (2012) 6662-6666.
    [44] S. Hu, A. Trinchi, P. Atkin, I. Cole, Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light, Angewandte Chemie International Edition 54(10) (2015) 2970-2974.
    [45] F. Yuan, L. Ding, Y. Li, X. Li, L. Fan, S. Zhou, D. Fang, S. Yang, Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range, Nanoscale 7(27) (2015) 11727-11733.
    [46] C. Zhu, J. Zhai, S. Dong, Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction, Chemical communications 48(75) (2012) 9367-9369.
    [47] W. Wei, C. Xu, L. Wu, J. Wang, J. Ren, X. Qu, Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display, Scientific Reports 4 (2014) 3564.
    [48] J. Ju, W. Chen, Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media, Biosensors and bioelectronics 58 (2014) 219-225.
    [49] N. Zheng, X. Chu, L. Pan, S. Bi, S. Ding, X. Zhou, Measurement of Fluorescence Spectra and Quantum Yield of Carbon Nanoparticles Made from Monosodium Glutamate, Journal of Advances in Physical Chemistry 5(3) (2016) 75-82.[50] H.J. Yvon, A guide to recording fluorescence quantum yields, HORIBA Jobin Yvon Inc, Stanmore, Middlesex, UK (2012).
    [51] A.M. Brouwer, Standards for photoluminescence quantum yield measurements in solution IUPAC Technical Report, Pure and Applied Chemistry 83(12) (2011) 2213-2228.
    [52] M. Han, L. Wang, L. Bai, Y. Zhou, Y. Sun, H. Li, H. Huang, Y. Liu, Z. Kang, Pyridine derivative-induced fluorescence in multifunctional modified carbon dots and their application in thermometers, Journal of Materials Chemistry B 5(21) (2017) 3964-3969.
    [53] F. Zhang, X. Feng, Y. Zhang, L. Yan, Y. Yang, X. Liu, Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs, Nanoscale 8(16) (2016) 8618-8632.
    [54] X. Hou, Y. Li, C.J.A.J.o.C. Zhao, Microwave-assisted synthesis of nitrogen-doped multi-layer graphene quantum dots with oxygen-rich functional groups, 69(3) (2016) 357-360.
    [55] K. Jiang, S. Sun, L. Zhang, Y. Wang, C. Cai, H. Lin, interfaces, Bright-yellow-emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing, ACS Applied Materials 7(41) (2015) 23231-23238.
    [56] J.-Y. Yin, H.-J. Liu, S. Jiang, Y. Chen, Y. Yao, Hyperbranched polymer functionalized carbon dots with multistimuli-responsive property, ACS Macro Letters 2(11) (2013) 1033-1037.
    [57] Z. Gan, P. Pan, Z. Chen, M. Meng, H. Xu, Z. Yu, C. Chang, Y. Tao, Ultraviolet Photoluminescence of Carbon Nanospheres and its Surface Plasmon-Induced Enhancement, Small 14(16) (2018) e1704239.
    [58] X. Xu, F. Gao, X. Bai, F. Liu, W. Kong, M.J.M. Li, Tuning the photoluminescence of graphene quantum dots by photochemical doping with nitrogen, Multidisciplinary Digital Publishing Institute 10(11) (2017) 1328.
    [59] X. Hou, Y. Li, C. Zhao, Microwave-Assisted Synthesis of Nitrogen-Doped Multi-Layer Graphene Quantum Dots with Oxygen-Rich Functional Groups, Australian Journal of Chemistry 69(3) (2016) 357.
    [60] A.E. Tomskaya, M.N. Egorova, A.N. Kapitonov, D.V. Nikolaev, V.I. Popov, A.L. Fedorov, S.A. Smagulova, Synthesis of Luminescent N-Doped Carbon Dots by Hydrothermal Treatment, Physica Status Solidi (b) 255(1) (2018) 222-226.
    [61] M. Abdullah Issa, Z. Z Abidin, S. Sobri, S. Rashid, M. Adzir Mahdi, N. Azowa Ibrahim, M. Y Pudza, Facile Synthesis of Nitrogen-Doped Carbon Dots from Lignocellulosic Waste, Nanomaterials (Basel) 9(10) (2019) 1500.
    [62] R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: A review, Materials Today Chemistry 8 (2018) 96-109.
    [63] S. Zhu, Y. Song, J. Wang, H. Wan, Y. Zhang, Y. Ning, B. Yang, Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state, Nano Today 13 (2017) 10-14.
    [64] M. Bacon, S.J. Bradley, T. Nann, Graphene Quantum Dots Particle & Particle Systems Characterization 31(4) (2014) 415-428.
    [65] Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications, Journal of Materials Chemistry C 2(34) (2014) 6921-6939.
    [66] M. Liu, Y. Xu, F. Niu, J.J. Gooding, J. Liu, Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging, Analyst 141(9) (2016) 2657-2664.
    [67] A.I. Sidorov, V.F. Lebedev, A.A. Kobranova, A.V. Nashchekin, Formation of carbon quantum dots and nanodiamonds in laser ablation of a carbon film, Quantum Electronics 48(1) (2018) 45.
    [68] R.L. Calabro, D.-S. Yang, D.Y. Kim, Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: Comparison with chemical oxidation, Journal of Colloid Interface Science 527 (2018) 132-140.
    [69] L. Chen, C.X. Guo, Q. Zhang, Y. Lei, J. Xie, S. Ee, G. Guai, Q. Song, C.M. Li, interfaces, Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells, ACS Applied Materials 5(6) (2013) 2047-2052.
    [70] Y. Zhu, G. Wang, H. Jiang, L. Chen, X. Zhang, One-step ultrasonic synthesis of graphene quantum dots with high quantum yield and their application in sensing alkaline phosphatase, Chemical Communications 51(5) (2015) 948-951.
    [71] T.C. Canevari, M. Nakamura, F.H. Cincotto, F.M. de Melo, H.E. Toma, High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions, Electrochimica Acta 209 (2016) 464-470.
    [72] H. Xu, K. Zhang, Q. Liu, Y. Liu, M. Xie, Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots, Microchimica Acta 184(4) (2017) 1199-1206.
    [73] D. Pooja, S. Saini, A. Thakur, B. Kumar, S. Tyagi, M.K. Nayak, A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection, Journal of Hazardous Materials 328 (2017) 117-126.
    [74] Q. Liu, C. Ma, X.-P. Liu, Y.-P. Wei, C.-J. Mao, J.-J. Zhu, A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers, Biosensors and Bioelectronics 92 (2017) 273-279.
    [75] M.A. Tabrizi, J.N. Varkani, Green synthesis of reduced graphene oxide decorated with gold nanoparticles and its glucose sensing application, Sensors Actuators B: Chemical 202 (2014) 475-482.
    [76] C.-B. Ma, Z.-T. Zhu, H.-X. Wang, X. Huang, X. Zhang, X. Qi, H.-L. Zhang, Y. Zhu, X. Deng, Y. Peng, A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications, Nanoscale 7(22) (2015) 10162-10169.
    [77] H. Ding, J.S. Wei, P. Zhang, Z.Y. Zhou, Q.Y. Gao, H.M. Xiong, Solvent-Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths, Small 14(22) (2018) e1800612.
    [78] G. Feng, M. Zhang, S. Wang, C. Song, J. Xiao, Ultra-fast responding and recovering ethanol sensors based on CdS nanospheres doped with graphene, Applied Surface Science 453 (2018) 513-519.
    [79] J. Gu, M.J. Hu, Q.Q. Guo, Z.F. Ding, X.L. Sun, J. Yang, High-yield synthesis of graphene quantum dots with strong green photoluminescence, RSC Advances 4(91) (2014) 50141-50144.
    [80] Y. Ko, J. Shim, C.-H. Lee, K.S. Lee, H. Cho, K.-T. Lee, D.I. Son, Synthesis and characterization of CuO/graphene (Core/shell) quantum dots for electrochemical applications, Materials Letters 217 (2018) 113-116.
    [81] F. Li, H. Li, T. Cui, One-step synthesis of solid state luminescent carbon-based silica nanohybrids for imaging of latent fingerprints, Optical Materials 73 (2017) 459-465.
    [82] F. Liu, X. Wang, J. Hao, S. Han, J. Lian, Q. Jiang, High Density Arrayed Ni/NiO Core-shell Nanospheres Evenly Distributed on Graphene for Ultrahigh Performance Supercapacitor, Scientific Reports 7(1) (2017) 17709.
    [83] X. Miao, D. Qu, D. Yang, B. Nie, Y. Zhao, H. Fan, Z. Sun, Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization, Advanced Materials 30(1) (2018) 1-8.
    [84] I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J.M. Lázaro-Martínez, E. Rodríguez-Castellón, D. Mutavdžić, K. Radotić, T.J. Bandosz, Fingerprint imaging using N-doped carbon dots, Carbon 144 (2019) 791-797.
    [85] T. Ogi, H. Iwasaki, K. Aishima, F. Iskandar, W.-N. Wang, K. Takimiya, K. Okuyama, Transient nature of graphene quantum dot formation via a hydrothermal reaction, RSC Advances 4(99) (2014) 55709-55715.
    [86] F.A. Permatasari, A.H. Aimon, F. Iskandar, T. Ogi, K. Okuyama, Role of C-N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route, Scientific Reports 6 (2016) 21042.
    [87] H. Safardoust-Hojaghan, M. Salavati-Niasari, O. Amiri, M. Hassanpour, Preparation of highly luminescent nitrogen doped graphene quantum dots and their application as a probe for detection of Staphylococcus aureus and E. coli, Journal of Molecular Liquids 241 (2017) 1114-1119.
    [88] T. Van Tam, S.G. Kang, K.F. Babu, E.-S. Oh, S.G. Lee, W.M. Choi, Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction, Journal of Materials Chemistry A 5(21) (2017) 10537-10543.
    [89] C. Wang, Z. Xu, H. Cheng, H. Lin, M.G. Humphrey, C. Zhang, A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature, Carbon 82 (2015) 87-95.
    [90] L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, L. Sun, M. Wu, Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties, Nature Communications 5 (2014) 5357.
    [91] K. Wenelska, E. Mijowska, Facile synthesis and properties of iron oxide spheres coated with carbon, Materials Letters 223 (2018) 235-238.
    [92] J.-D. Xie, G.-W. Lai, M.M. Huq, Hydrothermal route to graphene quantum dots: Effects of precursor and temperature, Diamond and Related Materials 79 (2017) 112-118.
    [93] M. Abdullah Issa, Z. Z Abidin, S. Sobri, S. Rashid, M. Adzir Mahdi, N. Azowa Ibrahim, M.J.N. Y Pudza, Facile Synthesis of Nitrogen-Doped Carbon Dots from Lignocellulosic Waste, 9(10) (2019) 1500.
    [94] T. Ogi, K. Aishima, F.A. Permatasari, F. Iskandar, E. Tanabe, K.J.N.J.o.C. Okuyama, Kinetics of nitrogen-doped carbon dot formation via hydrothermal synthesis, New Journal of Chemistry 40(6) (2016) 5555-5561.
    [95] R. Wang, K.-Q. Lu, Z.-R. Tang, Y.-J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis, Journal of Materials Chemistry A 5(8) (2017) 3717-3734.
    [96] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging, Angewandte Chemie International Edition 52(14) (2013) 3953-3957.
    [97] S. Ray, A. Saha, N.R. Jana, R. Sarkar, Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application, The Journal of Physical Chemistry C 113(43) (2009) 18546-18551.
    [98] J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, G. Zheng, Carbon nanodots featuring efficient FRET for real‐time monitoring of drug delivery and two‐photon imaging, Advanced Materials 25(45) (2013) 6569-6574.
    [99] X. Guo, C.-F. Wang, Z.-Y. Yu, L. Chen, S. Chen, Facile access to versatile fluorescent carbon dots toward light-emitting diodes, Chemical Communications 48(21) (2012) 2692-2694.
    [100] S. Wang, Y. Zhang, G. Pang, Y. Zhang, S. Guo, Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin A sensor, Analytical Chemistry 89(3) (2017) 1704-1709.
    [101] S. Zhuang, Y. Chen, W. Zhang, Z. Chen, Z.J.S.C.P. Wang, Mechanics, Astronomy, Humidity sensor and ultraviolet photodetector based on carrier trapping effect and negative photoconductivity in graphene quantum dots, Science China Physics 61(1) (2018) 014211.
    [102] C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, Core–shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors, Acs Nano 8(4) (2014) 4015-4022.
    [103] J. Wang, J. Han, X. Chen, X. Wang, Design strategies for two‐dimensional material photodetectors to enhance device performance, InfoMat 1(1) (2019) 33-53.
    [104] 郭修安, 矽摻雜石墨烯及其蕭特基光感測特性, 國立台灣科技大學 (2016) 66-70.
    [105] X. Li, M. Rui, J. Song, Z. Shen, H. Zeng, Carbon and graphene quantum dots for optoelectronic and energy devices: a review, Advanced Functional Materials 25(31) (2015) 4929-4947.
    [106] M. Buscema, J.O. Island, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S. van der Zant, A. Castellanos-Gomez, Photocurrent generation with two-dimensional van der Waals semiconductors, Chemical Society Reviews 44(11) (2015) 3691-3718.
    [107] Q. Zhang, J. Jie, S. Diao, Z. Shao, Q. Zhang, L. Wang, W. Deng, W. Hu, H. Xia, X.J.A.n. Yuan, Solution-processed graphene quantum dot deep-UV photodetectors, ACS Applied Materials 9(2) (2015) 1561-1570.
    [108] B.C. St-Antoine, D. Ménard, R. Martel, Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments, Nano Research 5(2) (2012) 73-81.
    [109] W. Liu, W. Wang, Z. Guan, H. Xu, A plasmon modulated photothermoelectric photodetector in silicon nanostripes, Nanoscale 11(11) (2019) 4918-4924.
    [110] N. Papaioannou, A. Marinovic, N. Yoshizawa, A.E. Goode, M. Fay, A. Khlobystov, M.-M. Titirici, A. Sapelkin, Structure and solvents effects on the optical properties of sugar-derived carbon nanodots, Scientific reports 8(1) (2018) 6559.
    [111] G. Rajender, P. Giri, Formation mechanism of graphene quantum dots and their edge state conversion probed by photoluminescence and Raman spectroscopy, Journal of Materials Chemistry C 4(46) (2016) 10852-10865.
    [112] M. Adams, J. Highfield, G.J.A.C. Kirkbright, Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous medium by optoacoustic spectrometry, ACS Applied Materials 49(12) (1977) 1850-1852.
    [113] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS nano 6(6) (2012) 5102-5110.
    [114] M.T. Hasan, R. Gonzalez-Rodriguez, C. Ryan, J.L. Coffer, A.V. Naumov, Variation of Optical Properties of Nitrogen-doped Graphene Quantum Dots with Short/Mid/Long-wave Ultraviolet for the Development of the UV Photodetector, ACS Applied Materials 11(42) (2019) 39035-39045.
    [115] S. Ghosh, B.K. Sarker, A. Chunder, L. Zhai, S.I. Khondaker, Position dependent photodetector from large area reduced graphene oxide thin films, Applied Physics Letters 96(16) (2010) 163109.
    [116] S. Lu, B. Panchapakesan, Photoconductivity in single wall carbon nanotube sheets, Nanotechnology 17(8) (2006) 1843.

    QR CODE