簡易檢索 / 詳目顯示

研究生: 王振霖
Chen-Lin Wang
論文名稱: 微電漿輔助合成石墨烯量子點 並應用於鈷離子感測及表面增強拉曼散射
Microplasma-assisted Graphene Quantum Dot Synthesis from O-phenylphenol for Cobalt (II) Sensing and R6G SERS
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 邱昱誠
Yu-Cheng Chiu
賴育英
Yu-Ying Lai
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 64
中文關鍵詞: 石墨烯量子點大氣常壓微電漿鈷離子感測表面增強拉曼散射
外文關鍵詞: Graphene quantum dot, microplasma, cobalt ion sensing, Surface-enhanced Raman scattering (SERS)
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 1 Introduction 1.1 Graphene quantum dot (GQD) 1.1.1 Photoluminescence (PL) 1.1.2 Synthetic methods 1.2 Atmospheric-pressured microplasma technique 1.3 Photoluminescence sensing (PL sensing) 1.3.1 GQDs-based sensors 1.3.2 Cobalt (Co2+) ion sensing 1.3.3 Metal ion to ligand charge transfer (MLCT) 1.4 Surface-enhanced Raman Scattering (SERS) 1.4.1 Raman scattering 1.4.2 SERS 2 Experimental 2.1 Chemicals and materials 2.2 Characterization methods 2.2.1 Ultraviolet-visible spectroscopy 2.2.2 Photoluminescence spectroscopy 2.2.3 Raman spectroscopy 2.2.4 Transmission electron microscopy (TEM) 2.2.5 X-ray photoelectron spectroscopy (XPS) 2.2.6 Mass spectrometry 2.3 Microplasma-assisted synthesis of GQD 2.3.1 Synthesis of OPP-GQD 2.3.2 Post-treatment processes 2.4 PL sensing experiment 2.5 SERS experiment 3 Results and discussion 3.1 Characterization of OPP-GQD 3.1.1 UV-vis spectroscopy 3.1.2 Photoluminescence spectroscopy (PL) 3.1.3 Raman spectroscopy 3.1.4 Transmission electron microscopy (TEM) 3.1.5 X-ray photoelectron spectroscopy (XPS) 3.1.6 Mass spectrometry 3.2 Mechanism study of microplasma-assisted synthesis of OPP-GQDs 3.3 PL sensing using OPP-GQD 3.3.1 Co2+ sensing using OPP-GQD 3.3.2 Supporting sensing mechanism 3.4 SERS enhancement using OPP-GQD 3.4.1 Dense R6G on the non-SERS active substrate 3.4.2 SERS of R6G on OPP-GQD 4 Conclusions 5 References

    1. Xu, Q., et al., Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 2019. 11(4): p. 1475-1504.
    2. Yan, X., X. Cui, and L.S. Li, Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. Journal of the American Chemical Society, 2010. 132(17): p. 5944-+.
    3. Li, M.X., et al., Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sensors, 2019. 4(7): p. 1732-1748.
    4. Sun, H.J., et al., Recent advances in graphene quantum dots for sensing. Materials Today, 2013. 16(11): p. 433-442.
    5. Li, L.L., et al., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013. 5(10): p. 4015-4039.
    6. Tian, P., et al., Graphene quantum dots from chemistry to applications. Materials Today Chemistry, 2018. 10: p. 221-258.
    7. Shen, J.H., et al., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012. 48(31): p. 3686-3699.
    8. Chong, Y., et al., The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials, 2014. 35(19): p. 5041-5048.
    9. Yuan, F.L., et al., Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016. 11(5): p. 565-586.
    10. Yan, Y.B., et al., Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO2 Reduction. ACS Nano, 2018. 12(4): p. 3523-3532.
    11. Frackowiak, D., THE JABLONSKI DIAGRAM. Journal of Photochemistry and Photobiology B-Biology, 1988. 2(3): p. 399-408.
    12. Sk, M.A., et al., Revealing the tunable photoluminescence properties of graphene quantum dots. Journal of Materials Chemistry C, 2014. 2(34): p. 6954-6960.
    13. Bala, T., et al., Interaction of different metal ions with carboxylic acid group: A quantitative study. Journal of Physical Chemistry A, 2007. 111(28): p. 6183-6190.
    14. Yang, G.C., et al., Exploring the Emissive States of Heteroatom-Doped Graphene Quantum Dots. Journal of Physical Chemistry C, 2018. 122(11): p. 6483-6492.
    15. Grzybowski, M., et al., Synthetic Applications of Oxidative Aromatic Coupling-From Biphenols to Nanographenes. Angewandte Chemie-International Edition, 2019: p. 31.
    16. Zhang, C.F., et al., Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta, 2016. 150: p. 54-60.
    17. Zhai, X.Y., et al., Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications, 2012. 48(64): p. 7955-7957.
    18. Zhu, C., et al., A new mild, clean and highly efficient method for the preparation of graphene quantum dots without by-products. Journal of Materials Chemistry B, 2015. 3(34): p. 6871-6876.
    19. Luo, Z.M., et al., Microwave-Assisted Preparation of White Fluorescent Graphene Quantum Dots as a Novel Phosphor for Enhanced White-Light-Emitting Diodes. Advanced Functional Materials, 2016. 26(16): p. 2739-2744.
    20. Dong, Y.Q., et al., Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 2012. 50(12): p. 4738-4743.
    21. Nsibande, S.A. and P.B.C. Forbes, Development of a turn-on graphene quantum dot-based fluorescent probe for sensing of pyrene in water. RSC Advances, 2020. 10(21): p. 12119-12128.
    22. Gan, Z.X., et al., Bright, stable, and tunable solid-state luminescence of carbon nanodot organogels. Physical Chemistry Chemical Physics, 2018. 20(26): p. 18089-18096.
    23. Ding, X.L., Direct synthesis of graphene quantum dots on hexagonal boron nitride substrate. Journal of Materials Chemistry C, 2014. 2(19): p. 3717-3722.
    24. Shi, J.J. and M.G. Kong, Evolution of discharge structure in capacitive radio-frequency atmospheric microplasmas. Physical Review Letters, 2006. 96(10): p. 4.
    25. Mariotti, D. and R.M. Sankaran, Microplasmas for nanomaterials synthesis. Journal of Physics D-Applied Physics, 2010. 43(32): p. 21.
    26. Chiang, W.H., C. Richmonds, and R.M. Sankaran, Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Science & Technology, 2010. 19(3): p. 8.
    27. Yang, J.S., D.Z. Pai, and W.H. Chiang, Microplasma-enhanced synthesis of colloidal graphene quantum dots at ambient conditions. Carbon, 2019. 153: p. 315-319.
    28. Li, L.L., et al., A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Advanced Functional Materials, 2012. 22(14): p. 2971-2979.
    29. Wang, D., et al., Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon, 2012. 50(6): p. 2147-2154.
    30. Fan, L.S., et al., Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta, 2012. 101: p. 192-197.
    31. Yang, F., et al., Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. Journal of Materials Chemistry, 2012. 22(48): p. 25471-25479.
    32. Bai, J.M., et al., Graphene Quantum Dots Combined with Europium Ions as Photoluminescent Probes for Phosphate Sensing. Chemistry-a European Journal, 2013. 19(12): p. 3822-3826.
    33. Freeman, R. and I. Willner, Optical molecular sensing with semiconductor quantum dots (QDs). Chemical Society Reviews, 2012. 41(10): p. 4067-4085.
    34. Chou, K.F. and A.M. Dennis, Forster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors. Sensors, 2015. 15(6): p. 13288-13325.
    35. Tvermoes, B.E., et al., Effects and blood concentrations of cobalt after ingestion of 1 mg/d by human volunteers for 90 d(1-3). American Journal of Clinical Nutrition, 2014. 99(3): p. 632-646.
    36. Bakker, E. and E. Pretsch, Potentiometric sensors for trace-level analysis. Trac-Trends in Analytical Chemistry, 2005. 24(3): p. 199-207.
    37. Yi, W., et al., Sensitive electrochemical sensor based on poly(l-glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions. RSC Advances, 2019. 9(30): p. 17325-17334.
    38. Sorouraddin, S.M., M.A. Farajzadeh, and T. Okhravi, Cyclohexylamine as extraction solvent and chelating agent in extraction and preconcentration of some heavy metals in aqueous samples based on heat-induced homogeneous liquid-liquid extraction. Talanta, 2017. 175: p. 359-365.
    39. Suo, L.Z., et al., Functionalization of a SiO2-coated magnetic graphene oxide composite with polyaniline-polypyrrole for magnetic solid phase extraction of ultra-trace Cr(iii) and Pb(ii) in water and food samples using a Box-Behnken design. New Journal of Chemistry, 2019. 43(30): p. 12126-12136.
    40. Yalcin, M.S., S. Ozdemir, and E. Kilinc, Preconcentrations of Ni(II) and Co(II) by using immobilized thermophilic Geobacillus stearothermophilus eSO-20 before ICP-OES determinations. Food Chemistry, 2018. 266: p. 126-132.
    41. Mettakoonpitak, J., et al., Low-cost reusable sensor for cobalt and nickel detection in aerosols using adsorptive cathodic square-wave stripping voltammetry. Journal of Electroanalytical Chemistry, 2017. 805: p. 75-82.
    42. Altunay, N., et al., Usage of the newly synthesized poly(3-hydroxy butyrate)-b-poly(vinyl benzyl xanthate) block copolymer for vortex-assisted solid-phase microextraction of cobalt (II) and nickel (II) in canned foodstuffs. Food Chemistry, 2020. 321: p. 7.
    43. Mulyana, Y., et al., Dinuclear cobalt(II) and cobalt(III) complexes of bis-bidentate napthoquinone ligands. Dalton Transactions, 2014. 43(6): p. 2499-2511.
    44. Skorik, N.A., et al., Cobalt(II) and copper(II) complexes with carboxylic acids, imidazole, and 2-methylimidazole. Russian Journal of Inorganic Chemistry, 2015. 60(6): p. 729-735.
    45. Smith, E. and G. Dent, Modern Raman spectroscopy: a practical approach. 2019: John Wiley & Sons.
    46. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE. Chemical Physics Letters, 1974. 26(2): p. 163-166.
    47. Sharma, B., et al., SERS: Materials, applications, and the future. Materials Today, 2012. 15(1-2): p. 16-25.
    48. Tan, X.J., et al., Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection. Chemphyschem, 2016. 17(17): p. 2630-2639.
    49. Kang, L.L., et al., Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. Journal of Materials Chemistry C, 2015. 3(35): p. 9024-9037.
    50. Li, Y.L., et al., A facile fabrication of large-scale reduced graphene oxide-silver nanoparticle hybrid film as a highly active surface-enhanced Raman scattering substrate. Journal of Materials Chemistry C, 2015. 3(16): p. 4126-4133.
    51. Ling, X., et al., Can Graphene be used as a Substrate for Raman Enhancement? Nano Letters, 2010. 10(2): p. 553-561.
    52. Liu, D.H., et al., Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nature Communications, 2018. 9: p. 10.
    53. Wu, J.B., et al., Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 2018. 47(5): p. 1822-1873.
    54. Suzuki, N., et al., Chiral Graphene Quantum Dots. ACS Nano, 2016. 10(2): p. 1744-1755.
    55. Stankovich, S., et al., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 2006. 16(2): p. 155-158.
    56. Hossain, M.F. and J.Y. Park, Plain to point network reduced graphene oxide - activated carbon composites decorated with platinum nanoparticles for urine glucose detection. Scientific Reports, 2016. 6: p. 10.
    57. Miao, X.A., et al., Red Emissive Sulfur, Nitrogen Codoped Carbon Dots and Their Application in Ion Detection and Theraonostics. ACS Applied Materials & Interfaces, 2017. 9(22): p. 18549-18556.
    58. Nie, H., et al., Carbon Dots with Continuously Tunable Full-Color Emission and Their Application in Ratiometric pH Sensing. Chemistry of Materials, 2014. 26(10): p. 3104-3112.
    59. Zhang, Y.X., et al., Enhancement of Cr(VI) removal by mechanically activated micron-scale zero-valent aluminum (MA-mZVAl): Performance and mechanism especially at near-neutral pH. Chemical Engineering Journal, 2018. 353: p. 760-768.
    60. Gore, A.H., et al., Highly Selective and Sensitive Recognition of Cobalt(II) Ions Directly in Aqueous Solution Using Carboxyl-Functionalized CdS Quantum Dots as a Naked Eye Colorimetric Probe: Applications to Environmental Analysis. ACS Applied Materials & Interfaces, 2012. 4(10): p. 5217-5226.
    61. Mauro, M., et al., When self-assembly meets biology: luminescent platinum complexes for imaging applications. Chemical Society Reviews, 2014. 43(12): p. 4144-4166.
    62. Jensen, L. and G.C. Schatz, Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
    63. Massarini, E., et al., Methodologies for assessment of limit of detection and limit of identification using surface-enhanced Raman spectroscopy. Sensors and Actuators B-Chemical, 2015. 207: p. 437-446.
    64. Le Ru, E.C., et al., Surface enhanced Raman scattering enhancement factors: a comprehensive study. Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
    65. Xie, L.M., et al., Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy. Journal of the American Chemical Society, 2009. 131(29): p. 9890-+.
    66. Wu, D., et al., A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system. Journal of Materials Chemistry C, 2018. 6(46): p. 12547-12554.
    67. Harris D. and Bertolucci M., Symmetry and Spectroscopy. Dover, New York, 1978. : p. 94
    68. R.W.G. Wyckoff, Crystal Structures. John Wiley, New York, 1963. : p. 7-83.

    無法下載圖示 全文公開日期 2025/08/03 (校內網路)
    全文公開日期 2025/08/03 (校外網路)
    全文公開日期 2025/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE